1)Cho a;b;c>0 thỏa \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=4\)
Chứng minh \(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le1\)
2) Cho a;b;c>0
CMR \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Cho a;b;c>0 thỏa a+b+c=3
CMR \(\dfrac{a+b}{\sqrt{a^2+b^2+6c}}+\dfrac{b+c}{\sqrt{b^2+c^2+6a}}+\dfrac{c+a}{\sqrt{c^2+a^2+6b}}>2\)
1) Cho x,y,z > -1 thỏa mãn:
\(x^3+y^3+z^3\)≥ \(x^2+y^2+z^2\)
CMR: \(x^5+y^5+z^5\)≥ \(x^2+y^2+z^2\)
2. Cho a,b,c ϵ {0;1;2} và a+b+c=3
CMR: \(a^2+b^2+c^2\) ≤ 5
3. Cho \(a_1,a_2,..,a_9\in\left[-1;1\right]\) sao cho \(a^3_1+a^3_2+...+a^3_9=0\)
CMR: \(a^3_1+a^3_2+...+a^3_9\le3\)
4. Cho \(ab\ge1\). CMR: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{1+ab}\)
5. Cho a,b,c >0. CMR:
\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\le3\cdot\frac{a^2+b^2+c^2}{a+b+c}\)
1 . Cho 3 số thực dương a,b,c. CMR::
\(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
2 . cho a, b, c là 3 số đôi một khác nhau thỏa mãn :
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
CMR : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
cho a,b,c thỏa mãn a+b+c=3. cmr :
\(\dfrac{a+1}{b^2+1}+\dfrac{b+1}{c^2+1}+\dfrac{c+1}{a^2+1}\ge a+b+c\)
Cho a; b; c > 0 thỏa mãn ab + bc + ca = 3
CMR \(\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\le1\)
Cho a,b,c>0.Cmr
\(1< \dfrac{a}{\sqrt{a^2+b^2}}+\dfrac{b}{\sqrt{b^2+c^2}}+\dfrac{c}{\sqrt{c^2+a^2}}\le\dfrac{3\sqrt{2}}{2}\)
P/s: nhân tiện làm rõ giùm BĐT \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{3}{2}\)(với \(a\ge b\ge c\))
Cho a+b+c=0 cmr căn 1/a^2+1/b^2+1/c^2= |1/a+1/b+1/c|
Cho 2/a=(1/b+1/c) (a,b,c thuộc Z,b-c khác 0)
Cmr:(a+b)/(a+b) + (a+c)/(a-c) = 2
Cho a,b,c là các số thực . CMR: ̣(a^2+1).(b^2+1).(c^2+1)>=(3(a+b+c)^2/4)