Sửa đề : Tính \(A=a^3+b^3+c^3-3abc\)
Giải
Ta có : \(A=a^3+b^3+c^3-3abc\)
\(\Leftrightarrow A=\left(a^3+b^3+3a^2b+3b^2a\right)+c^3-3a^2b-3b^2a-3abc\)
\(\Leftrightarrow A=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(\Leftrightarrow A=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(\Leftrightarrow A=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\right]\)
\(\Leftrightarrow A=0\left(a+b+c=0\right)\)
Vậy \(A=0\)