Violympic toán 9

Angela jolie

Cho a, b, c>0 thỏa abc=8. Chứng minh rằng \(\frac{1}{\sqrt{1+a^3}}+\frac{1}{\sqrt{1+b^3}}+\frac{1}{\sqrt{1+c^3}}\ge1\)

Nguyễn Việt Lâm
14 tháng 6 2020 lúc 19:12

\(\frac{1}{\sqrt{a^3+1}}=\frac{1}{\sqrt{\left(a+1\right)\left(a^2-a+1\right)}}\ge\frac{2}{a+1+a^2-a+1}=\frac{2}{a^2+2}\)

Thiết lập tương tự: \(\frac{1}{\sqrt{b^3+1}}\ge\frac{2}{b^2+2}\) ; \(\frac{1}{\sqrt{c^3+1}}\ge\frac{2}{c^2+2}\)

\(\Rightarrow VT\ge\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}=\frac{1}{\frac{a^2}{2}+1}+\frac{1}{\frac{b^2}{2}+1}+\frac{1}{\frac{c^2}{2}+1}\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xyz=\frac{1}{8}\)

\(\Rightarrow VT\ge\frac{x^2}{x^2+\frac{1}{2}}+\frac{y^2}{y^2+\frac{1}{2}}+\frac{z^2}{z^2+\frac{1}{2}}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+\frac{3}{2}}\)

\(\Rightarrow VT\ge\frac{x^2+y^2+z^2+2\left(xy+yz+zx\right)}{x^2+y^2+z^2+\frac{3}{2}}\ge\frac{x^2+y^2+z^2+6.\sqrt[3]{\left(xyz\right)^2}}{x^2+y^2+z^2+\frac{3}{2}}=\frac{x^2+y^2+z^2+\frac{3}{2}}{x^2+y^2+z^2+\frac{3}{2}}=1\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\) hay \(a=b=c=2\)

Bình luận (0)

Các câu hỏi tương tự
Nguyễn Ngọc Bảo Quang
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Lê Đình Quân
Xem chi tiết
Nguyễn Thu Ngà
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Khánh Ngọc
Xem chi tiết
Nguyễn Đức Anh
Xem chi tiết
Angela jolie
Xem chi tiết
Lê Đình Quân
Xem chi tiết