t nhớ Akai Haruma làm bài này rồi.CHTT đi:v
t nhớ Akai Haruma làm bài này rồi.CHTT đi:v
Cho a, b, c là các số thực dương. Tìm giá trị lớn nhất của biểu thức: \(M=\sqrt{\dfrac{a}{b+c+2a}}+\sqrt{\dfrac{b}{c+a+2b}}+\sqrt{\dfrac{c}{a+b+2c}}\)
Cho a,b,c là ba số thực dương thỏa mãn \(a+b+c=2\). Yìm GTLN của biểu thức
\(P=\dfrac{ab}{\sqrt{ab+2c}}+\dfrac{bc}{\sqrt{bc+2a}}+\dfrac{ca}{\sqrt{ac+2b}}\)
Ch a, b, c là 3 số dương thỏa mãn: a+b+c=6. Tìm giá trị lớn nhất của biểu thức: \(A=\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ca}{c+3a+2b}\)
Cho a,b,c là các số dương. CMR
\(\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}+\dfrac{b}{\sqrt{2c^2+2a^2-b^2}}+\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\sqrt{3}\)
cho a,b,c là các số thực thỏa mãn 6a+3b+2c=abc.tìm giá trị lớn nhất của biểu thức
B=\(\dfrac{1}{\sqrt{a^2+1}}+\dfrac{1}{\sqrt{b^2+4}}+\dfrac{1}{\sqrt{c^2+9}}\)
Cho a , b , c là các số thực dương thỏa mãn : \(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+2015\)
Tìm GTLN của biểu thức \(P=\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
Cho a,b,c là cá số thực dương thỏa mãn điều kiện : a+b+c=3 .Tìm giá trị lớn nhất của biểu thức \(P=\dfrac{bc}{\sqrt{3a+bc}}+\dfrac{ca}{\sqrt{3b+ca}}+\dfrac{ab}{\sqrt{3c+ab}}\)
Cho a, b, c là số thực dương thỏa mãn: a+b+c=1. Tìm GTLN của biểu thức: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ac}{b+ac}}\)
cho a, b, c là các số thực dương thỏa mãn a+b+c=1. tìm giá trị nhỏ nhất của biểu thức \(A=\dfrac{1}{2a-a^2}+\dfrac{1}{2b-b^2}+\dfrac{1}{2c-c^2}+3\)