Đặt \(A=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
dùng BĐT Cauchy cho 3 số dương
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}}=3\)
\(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\ge3\sqrt[3]{\frac{b}{a}\cdot\frac{c}{b}\cdot\frac{a}{c}}=3\)
Cộng theo vế ta có
\(A\ge3+3=6\)
Vậy MinA=6
Áp dụng bđt Cauchy , ta có : \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}+2\sqrt{\frac{b}{c}.\frac{c}{b}}+2\sqrt{\frac{c}{a}.\frac{a}{c}}\)
\(=2+2+2=6\)
Dấu "=" xảy ra khi \(\begin{cases}\frac{a}{b}=\frac{b}{a}\\\frac{b}{c}=\frac{c}{b}\\\frac{c}{a}=\frac{a}{c}\end{cases}\) \(\Rightarrow a=b=c\)
Vậy BT đạt GTNN bằng 6 khi a = b = c