`a,b,c\in [0;1]`
`=>a(a-1)(b-1)\ge 0`
`<=> a(ab-a-b+1)\ge 0`
`<=> a^2b\ge a^2+ab-a`
Hoàn toàn tương tự:
`=>a^2b+b^2c+c^2a+1\geq a^2+b^2+c^2+ab+bc+ac+1-a-b-c(***)`
Lại có:
`(a-1)(b-1)(c-1)\le 0`
`<=> (ab-a-b+1)(c-1)\le 0`
`<=abc-(ab+bc+ac)+a+b+c-1\le 0`
`<=> ab+bc+ac+1\geq a+b+c+abc\geq a+b+c(******)`
`(***),(******)=> a^2b+b^2c+c^2a+1\geq a^2+b^2+c^2`
bạn tham khảo :https://hoc24.vn/hoi-dap/question/825780.html