Lời giải:
Đặt \(A=(a+1)(b+1)(c+1)\)
\(6A=(a+1)(b+b+2)(c+c+c+3)\)
Áp dụng BĐT AM-GM ta có:
\(6A\geq 2\sqrt{ab}.3\sqrt[3]{2b^2}.4\sqrt[4]{3c^3}\)
\(\Leftrightarrow 6A\geq 24\sqrt{a}.\sqrt[3]{2b^2}.\sqrt[4]{3c^3}=24\sqrt[12]{a^6.16b^8.27c^9}\)
\(\Leftrightarrow A\geq 4\sqrt[12]{432a^6b^8c^9}\) (1)
Lại có:
\(abc=ab(6-a-b)=\frac{2}{9}.3a.\frac{3}{2}b(6-a-b)\)
\(\leq \frac{2}{9}.\left(\frac{3a+\frac{3}{2}b+6-a-b}{3}\right)^3\) (BĐT AM-GM ngược dấu)
\(\Leftrightarrow abc\leq \frac{2}{9}\left(\frac{6+2a+\frac{b}{2}}{3}\right)^3\leq \frac{2}{9}\left(\frac{6+2+1}{3}\right)^3\)
\(\Leftrightarrow abc\leq 6\) (2)
Từ (1); (2) suy ra \(A\geq 4\sqrt[12]{2.(abc)^3.a^6b^8c^9}\geq 4\sqrt[12]{a^3b.a^3b^3c^3.a^6b^8c^9}\)
(do \(a\leq 1, b\leq 2\))
hay \(A\geq 4\sqrt[12]{(abc)^{12}}=4abc\)
Do đó ta có đpcm.
Dấu bằng xảy ra khi \((a,b,c)=(1,2,3)\)