Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Nue nguyen

Cho a, b, c > 0 thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{a^2+c^2}=\sqrt{2011}\). C\m :

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{1}{2}.\sqrt{\dfrac{2011}{2}}\)

Lightning Farron
28 tháng 1 2018 lúc 18:46

Đặt \(\left\{{}\begin{matrix}\sqrt{a^2+b^2}=x\\\sqrt{b^2+c^2}=y\\\sqrt{c^2+a^2}=z\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{x^2+z^2-y^2}{2}\\b^2=\dfrac{x^2+y^2-z^2}{2}\\c^2=\dfrac{y^2+z^2-x^2}{2}\\x+y+z=\sqrt{2011}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}b+c\le\sqrt{2\left(b^2+c^2\right)}=\sqrt{2}y\\a+b\le\sqrt{2}x\\c+a\le\sqrt{2}z\end{matrix}\right.\)

\(VT=\dfrac{1}{2\sqrt{2}}\left(\dfrac{x^2+z^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}+\dfrac{y^2+z^2-x^2}{x}\right)\)

\(\ge\dfrac{1}{2\sqrt{2}}\left(\dfrac{2\left(x+y+z\right)^2}{\left(x+y+z\right)}-\left(x+y+z\right)\right)\)

\(=\dfrac{1}{2\sqrt{2}}\left(x+y+z\right)=\dfrac{\sqrt{2011}}{2\sqrt{2}}=VP\)

Bình luận (0)

Các câu hỏi tương tự
Kimian Hajan Ruventaren
Xem chi tiết
vung nguyen thi
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Serena chuchoe
Xem chi tiết
Thảo Vi
Xem chi tiết
Thảo Vi
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Kinder
Xem chi tiết
SA Na
Xem chi tiết