Ta co : √a/√(b+c)=a/√a.(b+c)=2a/2√a.(b+c)≥2a/(a+b+c)
Vi a,b,c>0 nen √a/√(b+c)>2a/(a+b+c)
Tuong tu √b/√(b+c)>2b(a+b+c)
√c/√(a+b)>2c/(a+b+c)
=> VT>2a/(a+b+c) + 2b/(a+b+c) + 2c/(a+b+c)=2.(a+b+c)/(a+b+c)=2
Ta co : √a/√(b+c)=a/√a.(b+c)=2a/2√a.(b+c)≥2a/(a+b+c)
Vi a,b,c>0 nen √a/√(b+c)>2a/(a+b+c)
Tuong tu √b/√(b+c)>2b(a+b+c)
√c/√(a+b)>2c/(a+b+c)
=> VT>2a/(a+b+c) + 2b/(a+b+c) + 2c/(a+b+c)=2.(a+b+c)/(a+b+c)=2
Cho a, b, c > 0 thoả mãn: \(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\). Chứng minh rằng: \(\dfrac{\sqrt{a}}{a+1}+\dfrac{\sqrt{b}}{b+1}+\dfrac{\sqrt{c}}{c+1}=\dfrac{2}{\sqrt{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
Cho a, b, c, d là các số dương. Chứng minh rằng:
\(\sqrt{\dfrac{a}{b+c+d}}+\sqrt{\dfrac{b}{c+d+a}}+\sqrt{\dfrac{c}{d+a+b}}+\sqrt{\dfrac{d}{a+b+c}}>2\)
Cho 3 số dương a, b, c thoả mãn: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\). Chứng minh rằng: \(\dfrac{a^2}{b+c}+\dfrac{a^2}{b+c}+\dfrac{a^2}{b+c}\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)
Cho 3 số a, b, c không âm thỏa mãn điều kiện a+b+c=2, chứng minh rằng: \(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+a+b}+\dfrac{\sqrt{c}}{1+a+b+c}\le2\)
cho 3 số thực dương a,b,c thỏa mãn \(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}=2\) .Chứng minh:
\(\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{2}\ge\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}\)
Cho a, b, c > 0. Chứng minh \(\sqrt{\dfrac{a^3}{b^3}}+\sqrt{\dfrac{b^3}{c^3}}+\sqrt{\dfrac{c^3}{a^3}}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)
cho a,b,c >0
chứng minh rằng
\(\dfrac{a^2}{\sqrt{b^2+c^2}}+\dfrac{b^2}{\sqrt{a^2+c^2}}+\dfrac{c^2}{\sqrt{a^2+b^2}}\ge\dfrac{a+b+c}{\sqrt{2}}\)
Bài tập:
a,Cho a+b+c=1. Chứng minh
\(a\sqrt[3]{1+b-c}+b\sqrt[3]{1 +c-a}+c\sqrt[3]{1+a-b}\le1\)
b, Cho a,b,c>0. chứng minh:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Cho 3 số thực dương a, b, c thoả mãn \(a+b+c\le\sqrt{3}\). Chứng minh rằng: \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)