a/
Cho a-b=1. Tìm GTNN của A = a3 - b3 - ab
b/
Cho 3a + 5b = 12 . Tìm GTLN của B = ab
Cho a+b+c=3 và a, b, c>0. Tìm GTNN của biểu thức: \(P=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Bài 1: cho a + b = 1. Tìm GTNN A = a3+b3+ab
Bài 2: Tìm GTNN B = 2/6x-5-9x2
10 : a) Cho x+2y=1. Tìm GTNN của A=x^2+2y^2
b) Cho 4x-3y=7. Tìm GTNN của B=2x^2+5y^2
c) Cho a+b=1.Tìm GTNN của C=a^3+b^3
d) Cho xy=1. Tìm GTNN của D=\(\left|x+y\right|\)
Cho a,b thỏa mãn a,b>0 và \(a^3+b^3+6ab\le8\)
tìm GTNN A=\(\dfrac{1}{a^2+b^2}+\dfrac{3}{ab}+ab\)
Cho các số dương a,b thỏa mãn a2+b2+ab=27. Tìm GTNN của a3+b3
Cho số dương a, b, c thỏa mãn a+b=10.Tìm GTNN của :
a) A=\(\frac{5}{4ab}+\frac{1}{2\left(a^2+b^2\right)}\) b) B= \(a^4+b^4+\frac{3}{ab}\)
1)Tìm GTNN của B= x/1-x + 5/x với 0<x<1.
2)Với mọi x;y>0 thỏa mãn 2/x + 3/y = 1.Tìm GTNN của B=x+y
3)Cho a;b>0 và a+b=1.Chứng minh rằng ab^2 lớn hơn hoặc bằng 4/27
Mn giúp e với
E đangg cần gấp
Cảm ơn mn trước nhoa!!!!!!!!
Cho a,b,c là các số dương.
a) CMR: \(a^3+b^3\ge a^2b+ab^2\)
b) Giả sử abc=1. Tìm GTLN của biểu thức:
\(P=\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+\dfrac{1}{c^3+a^3+1}\)