Phạm Hoàng Giang, Nguyễn Tấn Tài, Hung nguyen, ๖ۣۜĐặng♥๖ۣۜQuý, TRẦN MINH HOÀNG, lê thị hương giang, Linh_Windy, Fairy Tail, Ái Hân Ngô, @Toshiro Kiyoshi, ...
Help me!!!
@DƯƠNG PHAN KHÁNH DƯƠNG, Phạm Hoàng Giang, ...
Phạm Hoàng Giang, Nguyễn Tấn Tài, Hung nguyen, ๖ۣۜĐặng♥๖ۣۜQuý, TRẦN MINH HOÀNG, lê thị hương giang, Linh_Windy, Fairy Tail, Ái Hân Ngô, @Toshiro Kiyoshi, ...
Help me!!!
@DƯƠNG PHAN KHÁNH DƯƠNG, Phạm Hoàng Giang, ...
B1: Cho x là số nguyên. CMR:
N = x4 - 4x3 -2x2 + 12x + 9 là 1 số chính phương.
B2: Cho x, y, z là các số tự nhiên. CMR:
P = 4x(x + y)(x + y + z)(x + z) + y2z2 là 1 số chính phương.
Cho đa thức :
A= (x + y) (y + z) (z + x) + xyz
a) Phân tích A thành nhân tử
b) Chứng minh rằng nếu x, y ,z là các số nguyên và x + y+z chia hết cho 6 thì A- 3xyz chia hết cho 6
1. Cho \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(c+a-2b\right)^2.\)
Chứng minh: a=b=c.
2. Chứng minh rằng:
a, A= x4 - 4x3 - 2x2 +12x +9 là số chính phương \(\forall\)x,y,z \(\in Z\).
b, B = 4x(x+y)(x+y+z)(x+z) + y2z2 là số chính phương với \(\forall\)x,y,z\(\in N\).
với x y z là các số tự nhiên thỏa mãn đẳng thức x2+y2=z2 chứng minh rằng 17xy chia hết cho 12
đề bài cho như sau :
Cho a,b,c > 0 thỏa mãn :
ab + bc + ca + 2abc = 1
CMR : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge4\left(a+b+c\right)\)
Cách làm như sau :
Từ điều kiện đề bài suy ra tồn tại các số x,y,z >0 thỏa mãn :
( a , b , c ) = \(\left(\dfrac{x}{y+z};\dfrac{y}{x+z};\dfrac{z}{x+y}\right)\) Khi đó , BĐT cần chứng minh tương đương với : \(\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{z+x}{y}\ge4\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{x}{z}\right)+\left(\dfrac{y}{x}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{z}{y}\right)\ge4\left(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\right)\)(*) BĐT trên hiển nhiên đúng do theo BĐT Cauchy-Schwarz thì : \(x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{4x}{y+z}\) \(y\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{4y}{x+z}\) \(z\left(\dfrac{1}{y}+\dfrac{1}{x}\right)\ge\dfrac{4x}{y+z}\) Cộng theo vế thì ta thu được (*) , do đó ta có đpcm Dấu "=" xảy ra khi x = y = z => a = b = c = 1/2 CHO MÌNH HỎI LÀ MÌNH KHÔNG HIỂU CHỖ hiển nhiên đúng khi cauchy swat làm sao lại lớn hơn hoặc bằng cái đấy , AI GIẢI THÍCH CHO MÌNH VỚI VÀ THÊM CẢ CHỖ ĐẦU BÀI Ý ĐÚNG 1 PHÁT RA X,Y,Z LÀ SAO ? GIẢI THÍCH NHANH SẼ NHẬN GPCHO X,Y,Z LÀ 3 số dương thoả mãn\(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)+\(\dfrac{1}{z}\)=2016
tìm GTLN của P=\(\dfrac{x+y}{x^2+y^2}\)+\(\dfrac{y+z}{y^2+z^2}\)+\(\dfrac{z+x}{z^2+x^2}\)
a. Tìm x, y, z biết x^2+y^2+z^2=4x-2y+6z-14
b. Cho (x+y+z).(xy+yz+zx)=xyz
CMR x^2013+y^2013+z^2013=(x+y+z)^2013
Chứng minh rằng biểu thức:
\(4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\) luôn có giá trị không âm với mọi giá trị của x,y và z.
Chứng minh rằng: \(\frac{x^2-y^2}{\left(z+x\right)\left(z+y\right)}+\frac{y^2-z^2}{\left(x+y\right)\left(x+z\right)}+\frac{z^2-x^2}{\left(y+z\right)\left(y+x\right)}=\frac{x-y}{x+y}+\frac{y-z}{y+z}+\frac{z-x}{z+x}\)