Ta có:\(A=3+3^2+3^3+...+3^{17}\)
\(3A=3\cdot\left(3+3^2+3^3+...+3^{17}\right)\)
\(3A=3^2+3^3+3^4+...+3^{18}\)
\(3A-A=\left(3^2+3^3+3^4+...+3^{18}\right)-\left(3+3^2+3^3+...+3^{17}\right)\)
\(2A=3^{18}-3\)
\(A=\frac{3^{18}-3}{2}\)
Vì \(3^{18}-3>3^{18}-4\)
\(\Rightarrow\frac{3^{18}-3}{2}>\frac{3^{18}-4}{2}\)
\(\Rightarrow A>B\)
Đúng 0
Bình luận (0)
A = 31 + 2 + 3 + 4 + 5 + 6 ... + 17
A = 3153
B = [ 318 - 4 ]
Ta thấy rõ ràng A sẽ lớn hơn B vì 153 > 18 ( chưa kể phải trừ thêm 4 ở biểu thức B )
A > B
Phạm Nguyễn Tất Đạt đúng nhưng hơi dài dòng quá !!
Đúng 0
Bình luận (1)