Các số tự nhiên không chia hết cho 5 sẽ có dạng : \(5k\pm1;5k\pm2\) (k thuộc N)
Ta giả sử các số đó là \(a=5k+1,b=5k-1,c=5k-2,d=5k+2\)
\(\Rightarrow a+b+c+d=\left(5k+1\right)+\left(5k-1\right)+\left(5k-2\right)+\left(5k+2\right)=20k\)
Vì 20k chia hết cho 5 nên a + b + c + d chia hết cho 5 (đpcm)
Gọi 4 số đó lần lượt là a ; b ; c ; d
Đặt:
a = 5n + 1
b = 5n + 2
c = 5n + 3
d = 5n + 4
a + b + c + d
= (5n + 1) + (5n + 2) + (5n + 3) + (5n + 4)
= 20n + 10
=> a + b + c + d \(⋮\) 5
Các số dư của 4 số ấy do khác nhau nên lần lượt bằng 1; 2; 3; 4.
Số dư của tổng 4 số ấy khi chia cho \(5=1+2+3+4=10\) chia hết cho 5.
Nên tổng 4 số ấy chia hết cho 5.