Từ \(abc+a+b=3ab\Leftrightarrow c+\dfrac{1}{a}+\dfrac{1}{b}=3\)
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b}\right)\rightarrow\left(x;y\right)\left(x;y>0\right)\Rightarrow c+x+y=3\)
BĐT cần chứng minh là:
\(\sqrt{\dfrac{1}{x+y+xy}}+\sqrt{\dfrac{1}{y+a+ay}}+\sqrt{\dfrac{1}{x+a+ax}}\ge\sqrt{3}\)
Áp dụng BĐT AM-GM ta có:
\(VT\ge3\sqrt[6]{\dfrac{1}{\left(x+y+xy\right)\left(x+a+ax\right)\left(a+y+ay\right)}}\ge\sqrt{3}\)
\(\Leftrightarrow (x+y+xy)(x+a+ax)(a+y+ay)\leq \frac{1}{27}\)
BĐT này luôn đúng vì ta có 2 BĐT phụ sau luôn đúng theo AM-GM \(mnp\le\left(\dfrac{m+n+p}{3}\right)^3;mn+np+mp\le\dfrac{\left(m+n+p\right)^2}{3}\)
Ok. Done !