Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(P=\frac{a^2}{ab+ac}+\frac{b^2}{ba+bc}+\frac{c^2}{ca+cb}\geq \frac{(a+b+c)^2}{ab+ac+bc+ba+ca+cb}=\frac{(a+b+c)^2}{2(ab+bc+ac)}\)
Theo hệ quả quen thuộc của BĐT AM-GM:
$(a+b+c)^2\geq 3(ab+bc+ac)$
Do đó:
$P\geq \frac{3(ab+bc+ac)}{2(ab+bc+ac)}=\frac{3}{2}$
Vậy $P_{\min}=\frac{3}{2}$ khi $a=b=c$