Áp dụng BĐT Schur:
\(a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(c+b\right)+ca\left(a+c\right)\Rightarrow a^3+b^3+c^3+3abc+3abc\ge\left(a+b+c\right)\left(ab+bc+ac\right)=3\left(a+b+c\right)\)
Vậy \(A+3abc\ge3\left(a+b+c\right)\)
Cauchy :\(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\Rightarrow a+b+c\ge3\)
\(ab+bc+ac\ge3\sqrt[3]{abc}\Rightarrow1\ge abc\Rightarrow-3\le-3abc\)
A\(\ge\) 3(a+b+c)-3abc\(\ge\)3.3-3=6
Vậy A min=6\(\Leftrightarrow\) a=b=c=1
nham ab+bc+ac\(\ge3\sqrt[3]{\left(abc\right)^2}\)