Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Thanh Trang

Cho \(2018x^3=2019y^3=2020z^3\) và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=8\)

Tính giá trị biểu thức: \(B=\frac{\sqrt[3]{2018x^2+2019y^2+2020z^2}}{\sqrt[3]{2018}+\sqrt[3]{2019}+\sqrt[3]{2020}}\)

Akai Haruma
3 tháng 8 2019 lúc 23:22

Lời giải:

Đặt mẫu số của $B$ là $M$.

Từ \(2018x^3=2019y^3=2020z^3\)

\(\Rightarrow \sqrt[3]{2018}x=\sqrt[3]{2019}y=\sqrt[3]{2020}z=\frac{\sqrt[3]{2018}}{\frac{1}{x}}=\frac{\sqrt[3]{2019}}{\frac{1}{y}}=\frac{\sqrt[3]{2020}}{\frac{1}{z}}=\frac{\sqrt[3]{2018}+\sqrt[3]{2019}+\sqrt[3]{2020}}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\)

\(=\frac{\sqrt[3]{2018}+\sqrt[3]{2019}+\sqrt[3]{2020}}{8}=\frac{M}{8}\)

\(\Rightarrow \left\{\begin{matrix} x=\frac{M}{8\sqrt[3]{2018}}\\ y=\frac{M}{8\sqrt[3]{2019}}\\ z=\frac{M}{8\sqrt[3]{2020}}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2018x^2=\frac{\sqrt[3]{2018}M^2}{64}\\ 2019y^2=\frac{\sqrt[3]{2019}M^2}{64}\\ 2020z^2=\frac{\sqrt[3]{2020}M^2}{64}\end{matrix}\right.\)

\(\Rightarrow 2018x^2+2019y^2+2020z^2=\frac{M^2(\sqrt[3]{2018}+\sqrt[3]{2019}+\sqrt[3]{2020})}{64}=\frac{M^3}{64}\)

\(\Rightarrow B=\frac{\sqrt[3]{\frac{M^3}{64}}}{M}=\frac{M}{4M}=\frac{1}{4}\)


Các câu hỏi tương tự
Hiền Nguyễn Thị
Xem chi tiết
Hoài Ngọc Phạm
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Agami Raito
Xem chi tiết
Lê Gia Bảo
Xem chi tiết
Yêu các anh như ARMY yêu...
Xem chi tiết
Phạm Tuấn Long
Xem chi tiết
nguyen ha giang
Xem chi tiết
Sakura
Xem chi tiết