Ta có
\(m_{BaCl_2}=\frac{200.20,8}{100}=41,6\left(g\right)\Rightarrow n_{BaCl_2}=\frac{41,6}{208}=0,2\left(mol\right)\)
\(m_{Na_2SO_4}=\frac{150.28,4}{100}=42,6\left(g\right)\Rightarrow n_{Na_2SO_4}=\frac{42,6}{142}=0,3\left(mol\right)\)
\(BaCl_2+Na_2SO_4\rightarrow BaSO_4\downarrow+2NaCl\)
Thấy \(n_{BaCl_2}< n_{Na_2SO_4}\Rightarrow\) Tính theo \(BaCl_2\)
\(m_{ddsaupu}=200+150=350\left(g\right)\)
Có \(n_{NaCl}=2n_{BaCl_2}=0,4\left(mol\right)\)
\(\Rightarrow m_{NaCl}=58,5.0,4=23,4\left(g\right)\Rightarrow C\%\left(NaCl\right)=\frac{23,4}{350}.100\%\approx6,67\%\)
BaCl2 + Na2SO4-----> BaSO4 +2 NaCl
Ta có
m\(_{BaCl2}=\)\(\frac{200.20,8}{100}=41,6\left(g\right)\)
n\(_{BaCl2}=\frac{41,6}{110}=0,38\left(mol\right)\)
m\(_{Na2SO4}=\frac{150.28,4}{100}=42,6\left(g\right)\)
n\(_{Na2SO4}=\frac{42,6}{142}=0,3\left(mol\right)\)
=> BaCl2 dư
Theo pthh
n\(_{BaCl2}=n_{Na2SO4}=0,3\left(Mol\right)\)
n\(_{BaCl2}dư=0,38-0,3=0,08\left(mol\right)\)
mdd= 200+150=350(g)
C%(BaCl2)=\(\frac{0,08.110}{350}.100\%=2,5\%\)
Theo pthh
n\(_{NaCl}=2n_{Na2SO4}=0,6\left(mol\right)\)
C%(NaCl)=\(\frac{0,6.58,5}{350}.100\%=10\%\)
Chúc bạn học tốt