Cho A, B là hai tập hợp. Hãy xác định các tập hợp sau :
a) \(\left(A\cap B\right)\cup A\)
b) \(\left(A\cup B\right)\cap B\)
c) (\(A\)\ \(B\)) \(\cup B\)
d) (A \ B) \(\cap\) (B\A)
Cho các tập hợp A= {x ∈ R\(|\)-3<x<3}; B= {x ∈ R\(|\)-1 ≤ x ≤ 5}; C = {x ∈ R\(|\)Ixl ≥ 2}. Xác định các tập hợp A\(\cap\)B\(\cap\)C
A. [2;3)
B. (2;3)
C. [-1;3)
D. R
1.viết tập hợp các số tự nhiên lẻ bé thua 25 bằng 2 cách.
2.cho tập hợp A=0;1;2;3;...............2018
a, tính số phần tử của A
b, gọi S là tổng các phần tử của A .tính S
3. chứng minh rằng nếu A là tập hợp con của B và B là tập hợp con của D thì A là tập hợp con của D
4. hãy xác định tập hợp sau = cách chỉ ra tính chất đặc trưng của các phần tử của nó.
a, tập hợp M các số tự nhiên chia hết cho 5 và bé thua 30
b,tập hợp P các số : 1;4;9;16;25;36;49;64;81
cho tập hợp A={ x∈R / \(^{x^2+3x+4=0}\)}, tập hợp nào sau đây la đúng? Giải thích vì sao?
a) tập hợp A có một phần tử
b) tập hợp A có hai phần tử
c) tập hợp A=∅
d) tập hợp A có vô số phần tử
1) Cho mệnh đề A = “∃n ∈ N : 3n + 1 là số lẻ”, mệnh đề phủ định của mệnh đề A và tính đúng, sai của mệnh đề phủ định? Giải thích?
2) Cho tập hợp A = {1, 2, 3, 4, x, y}. Xét các mệnh đề sau: (I): “3 ∈ A”, (II): “{3; 4} ∈ A”, (III): “{a, 3, b} ∈ A”. Mệnh đề nào đúng?
3) Cho hai tập hợp A = {0; 2} và B = {0; 1; 2; 3; 4}. Có bao nhiêu tập hợp X thỏa mãn \(A\cup X=B\)
Cho A là tập hợp tất cả nghiệm của phương trình \(x^2-4x+3=0\); B là tập hợp các số có giá trị tuyệt đổi nhỏ hơn 4. Khẳng định nào sau đây đúng
A. \(A\cap B\)
B.\(A\cup B\)
C. \(A\B\)
D. B\A
bài 1: xét tính đúng sai (có giải thích) và lập mệnh đề phủ định của mệnh đề sau:
A:\(\exists n\in N,\)(n2+1)\(⋮\)2
bài 2 :cho 2 tập B= {\(x\in Q|\)(\(x+2x^{^{ }2}\))(\(x^2-3\))=0}
a) xác định các tập hợp A bằng cách liệt kê các phần tử
b) tìm các tập hợp X sao cho X\(\subset A\)
BÀI 3: cho các tập hợp sau: A=(-10;5], B=(\(-\infty\);3)\(\cup\)(7;20). tìm các tập hợp A\(\cup\)B, A\(\cap\)B, A\B
bài 4: cho các tập hợp sau: A=(2m-3;m+1] và B=(-3;6). tìm m để A\B\(\ne\varnothing\)
bài 5:xét tính đúng sai (có giải thích) và lập mệnh đề phủ định của mệnh đề sau:
A:"\(\exists x\in Q,x^2=2"\)
bài 6: cho 2 tập: A={\(x|x=2k+1,k\in Z,-2< x< 5\)}
a) xác định các tập hợp A bằng cách liệt kê các phần tử
b) tìm các tập hợp X sao cho X\(\subset A\)
Cho A, B là hai tập hợp khác rỗng phân biệt. Xem xét trong các mệnh đề sau, mệnh đề nào đúng ?
a) \(A\subset B\)\ A
b) \(A\subset A\cup B\)
c) \(A\cap B\subset A\cup B\)
d) A\ \(B\subset A\)
1) Cho tập hợp CRA = \([-3;\sqrt{8})\), CRB = \((-5;2)\cup\left(\sqrt{3};\sqrt{11}\right)\). Tập CR(A\(\cap\)B) là?
2) Tìm m để hàm số y = \(\sqrt{x-m+1}+\frac{2x}{\sqrt{-x+2m}}\)xác định trên khoảng (-1; 3).
3) Cho A = [-4; 1], B = [-3; m]. Tìm m để \(A\cup B=A\).