Cho hai số thực dương x, y thỏa mãn: x.y=2. Tìm giá trị nhỏ nhất của biểu thức: \(P=\dfrac{1}{x}+\dfrac{1}{2y}+\dfrac{1}{x+2y}\)
Cho các số x,y thỏa mãn đẳng thức:
\(^{2x^2}\)+\(^{2y^2}\)+3xy-x+y+1=0
Tính giá trị của biểu thức:
B=\(^{\left(x+y\right)^{2018}}\)+\(\left(x-2\right)^{2018}\)+\(\left(y-1\right)^{2018}\)
cho các số x,y thỏa mãn đẳng thức \(3x^2+3y^2+4xy+2x-2y+2=0\\ \)
tính giá trị biểu thức M=\(\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\)
Cho x,y,z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Tính giá trị của biểu thức: \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
Cho số thực x và y thỏa mãn \(x\ne y;x\ne0;y\ne0\)
CMR: \(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
1, cho 2 số thực x,y thỏa mãn x+y=3;xy=1. Tính giá trị của biểu thức P=x5+y5
Cho x; y là các số nguyên dương thả mãn: \(\dfrac{x^2+xy+1}{y^2+xy+1}\) là một số nguyên> Tính Giá trị của A = \(\dfrac{2010xy}{2009x^2+2011y^2}\)
Cho số thực x;y thỏa mãn: x^2 + xy + 2y^2 = 1 Tìm min và max của A = x - 2y + 3