Chương II - Đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
...BT...

Cho 2 đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến ngoài tại A. Kẻ tiếp tuyến chung ngoài DE, D thuộc (O), E thuộc (O’). Tiếp tuyến chung trong tại A cắt ED tại I. Gọi M là giao điểm của OI với AD, N giao điểm AE với O’I.

a)     Tứ giác AMIN là hình gì? Tại sao?

b)    CM hệ thức IM.IO = IN.IO’

c)     CM OO’ là tiếp tuyến của đường tròn đường kính DE

d)    Tính độ dài DE theo R và R’.

Thanh Hoàng Thanh
4 tháng 2 2021 lúc 11:40

a)     Xét (O): AI và DI là 2 tiếp tuyến cắt nhau tại I (gt)

=> AI = DI (TC 2 tiếp tuyến cắt nhau)

CMTT: AI = EI  (TC 2 tiếp tuyến cắt nhau)

=> AI = EI = DI

Mà  DE = EI + DI

=>AI = EI = DI =\(\dfrac{DE}{2}\)

Xét tam giác ADE có: AI = EI = DI =\(\dfrac{DE}{2}\)(cmt)

=> Tam giác ADE vuông tại A (định lý đảo đường trung tuyến trong tam giác vuông)

=> ^MAN = 90o

Xét tam giác AID: AI = DI (cmt) => Tam giác AID cân tại I 

Mà IM là đường phân giác AID (AI và DI là 2 tiếp tuyến cắt nhau tại I)

=>  IM là đường cao

=> ^IMA = 90o

CMTT: ^ANI = 90o

Xét TG AMIN:

 ^IMA = 90o (cmt)

^ANI = 90o (cmt)

^MAN = 90(cmt)

=> AMIN là hình chữ nhật (dhnb)

b) Xét tam giác OAI vuông tại A, AM là đường cao ( do AM vg góc OI)

=> IM.IO = IA2 (HTL) (1)

Xét tam giác O'AI vuông tại A, AN là đường cao ( do AN vg góc O'I)

=> IN.IO' = IA2 (HTL) (2)

Từ (1) và (2) => IM.IO = IN.IO’ (đpcm)

c) Xét (O) và (O'): 2 đường tròn (O) và (O’) tiếp xúc ngoài tại A (cmt)

=> A \(\in\)OO' (TC đường nối tâm)

mà IA vg góc AO (do AI là tiếp tuyến trong của 2 đường tròn (O) và (O’) tiếp xúc ngoài tại A )

=> OO' vg góc AI tại A  (*)

Xét tam giác ADE vuông tại A (^DAE = 90o do AMIN là hcn)

I là TĐ của DE (do ID = IE = \(\dfrac{DE}{2}\))

=> I là tâm đường tròn đường kính DE, nội tiếp tam giác ADE  

=> A \(\in\)(I) (**)

Từ (*) và (**) => OO’ là tiếp tuyến của đường tròn đường kính DE có A là tiếp điểm.

d) Xét tg OIO' vuông tại I, AI là đường cao:

AI= AO . AO' (HTL)

=> AI2= R. R'

Mà AI = \(\dfrac{DE}{2}\)(cmt)

=> (\(\dfrac{DE}{2}\))2 = R . R'

<=> \(\dfrac{DE^2}{4}\) = R . R'

<=> DE = 2\(\sqrt{R.R'}\)

 

 

 

 

 


Các câu hỏi tương tự
hoàng thiên
Xem chi tiết
Pham Bao
Xem chi tiết
Thoma Hayayo
Xem chi tiết
Phạm Duy Hùng
Xem chi tiết
13 - 9A3 - Võ Hoàng Khôi
Xem chi tiết
lethucuyen
Xem chi tiết
Nguyễn Nam
Xem chi tiết
Trần Hoàng Linh
Xem chi tiết
Ngưu Kim
Xem chi tiết