Bài 4: Phép đối xứng tâm

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bình Trần Thị

cho 2 điểm B , C cố định trên đường tròn (O ; R) và 1 điểm A thay đổi trên đường tròn đó . Hãy dùng phép đối xứng tâm để chứng minh rằng trực tâm H của tam giác ABC nằm trên 1 đường tròn cố định .

Hướng dẫn : gọi I là trung điểm của BC . Hãy vẽ đường kính AM của đường trnf rồi chứng minh rằng I là trung điểm của đoạn thẳng HM .

Nguyễn Anh Duy
27 tháng 8 2016 lúc 22:55

Bạn lấy thực hiện phép đối xứng qua \(BC\) thì \(O\) thành \(O'\) thì \(OB=O'B,OC=O'C\) mà \(OB=C=R\) cho nên \(O'B=O'C=R\left(1\right)\)
Ở đây \(R\) là bán kính đường tròn ngoại tiếp \(ABC'\)
, \(H\) thành \(H'\) với \(O\) là tâm đường tròn ngoại tiếp \(ABC\).
Cho nên \(\widehat{HBC}=\widehat{H'BC}\) ( phép đối xứng trực bảo toàn góc) mặt khác 
\(\widehat{HBC}=\widehat{HAC}\) cùng phụ với góc \(\widehat{C}\).
Điều này chứng tỏ \(ACH'B\) là tứ giác nội tiếp hay \(H'\) cũng thuộc \(\left(O\right)\)

Phép đối xứng là phép dời hình cho nên nó bảo toàn khoảng cách cũng có nghĩa 

\(O'H=OH'=R\) (vì \(H\) nằm trên \(\left(O\right)\)) (2)

Từ (1) và (2) ta được tam giác HBC luôn nội tiếp đường tròn \(\left(O'\right)\) bán kính R
do \(O,BC\) và R cố định nên \(O'\) cố định , ta được điều phải chứng minh.


Các câu hỏi tương tự
chíp chíp
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Quỳnh Như
Xem chi tiết
Đờ Thị Mờ
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết