a/ Đường thẳng qua gốc tọa độ có dạng \(y=kx\)
\(\Rightarrow k.1=-2\Rightarrow k=-2\)
b/ Gọi pt đường thẳng có dạng \(y=kx+b\)
\(\left\{{}\begin{matrix}k.1+b=-2\\k.\left(-4\right)+b=3\end{matrix}\right.\) \(\Rightarrow5k=-5\Rightarrow k=-1\)
a/ Đường thẳng qua gốc tọa độ có dạng \(y=kx\)
\(\Rightarrow k.1=-2\Rightarrow k=-2\)
b/ Gọi pt đường thẳng có dạng \(y=kx+b\)
\(\left\{{}\begin{matrix}k.1+b=-2\\k.\left(-4\right)+b=3\end{matrix}\right.\) \(\Rightarrow5k=-5\Rightarrow k=-1\)
tìm hệ số góc của đường thẳng đi qua góc toạ độ và
a, đi qau điểm A (3;1)
b, đi qua điểm B (1;-3)
tìm hệ số góc của đường thẳng đi qua góc toạ độ và
a, đi qau điểm A (3;1)
b, đi qua điểm B (1;-3)
a.trong mặt phẳng tọa độ Oxy, đường thẳng y=ax+b đi qua điểm m(-1;2) và song song với đường thẳng y=3x+1. tìm hệ số a và b
b.trong hệ trục tọa độ Oxy biết đường thẳng y=ax-1 đi qua điểm M(-1;1) tìm hệ số a
a) Tìm các giá trị của a và b để đường thẳng (d): y=ax+b đi qua hai điểm M(1;5) và N(2;8).
b) Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2x – a + 1 và parabol (P): y = \(\dfrac{1}{2}x^2\).
1.Tìm a để đường thẳng a đi qua điểm A (-1;3)
2.Tìm a để (d) cắt (P) tại hai điểm phân biệt có tọa độ (\(x_1;x_2\)) và (\(x_2;y_2\)) thỏa mãn điều kiện \(x_1x_2\left(y_1+y_2\right)+48=0\)
Cho parabol: \(y=\dfrac{-x^2}{4}\) và đường thẳng y=mx+n. Xác định các hệ số m và n để đường thẳng đi qua điểm (1;2) và tiếp xúc với parabol. Tìm tọa độ tiếp điểm, vẽ đồ thị của parabol và đường thẳng trên cùng 1 hệ trục tọa độ
(Làm hộ mình câu c nha)
Trong mặt phẳng tọa độ Oxy cho parabol (P): \(y=-x^2\) và đường thẳng (d) đi qua I(0;-1) và có hệ số góc k
a) CMR với mọi k thì đường thẳng (d) luôn cắt parabol (P) tại 2 điểm phân biệt A;B
b) Gọi hoành độ của A; B lần lượt là x1;x2. CM: \(\left|x_1-x_2\right|\ge2\)
c) Chứng minh: Tam giác OAB vuông
Gọi (d) là đường thẳng đi qua điểm \(C\left(\dfrac{3}{2};-1\right)\) và có hệ số góc m
a) Viết phương trình của (d)
b) Chứng tỏ rằng qua điểm C có hai đường thẳng (d) tiếp xúc với \(\left(P\right):y=ax^2\left(a\ne0\right)\) và vuông góc với nhau
Trong mặt phẳng tọa độ Oxy cho parabol \(\left(P\right):y=-x^2\) và đường thẳng (d) đi qua điểm I(0;-1) và có hệ số góc k.
a) Gọi hoành độ của A; B lần lượt là x1, x2. Chứng minh: \(\left|x_1-x_2\right|\ge2\)
b) Chứng minh: Tam giác OAB vuông
Trong mặt phẳng tọa độ Oxy cho đường thẳng (d):y=(a-2)x+b đi qua điểm M(-2;-1) và song song với đường thẳng y=x+2. Tìm các số a và b