Cho nửa đường tròn (O; R) đường kính AB. Lấy một điểm C thuộc nửa
đường tròn sao cho CA < CB (C khác A). Kẻ CH vuông góc với AB. Trên cùng
một nửa mặt phẳng bờ AB chứa nửa đường tròn, vẽ hai nửa đường tròn tâm O1
đường kính AH và tâm O2 đường kính HB. (O1) cắt CA tại E , (O2) cắt CB tại F.
a) Chứng minh tứ giác CEHF là hình chữ nhật.
b) Chứng minh CE.CA = CF.CB = HA.HB.
c) Chứng minh EF là tiếp tuyến chung của hai đường tròn (O1) và (O2).
d) Gọi I là điểm đối xứng của H qua E, CI cắt tiếp tuyến tại A của đường tròn
(O) tại M. Chứng minh BM, CH, EF đồng quy.
Từ một điểm nằm ngoài đường tròn (O;R) kẻ 2 tiếp tuyến MA, MB (A, B là các tiếp điểm). Hai đường cao AE, BF của ΔAMB cắt nhau tại H.
a, C/m: Tứ giác ABEF là tứ giác nội tiếp
b, Gọi I là trung điểm của AB. C/m: 4 điểm O, H, I, M thẳng hàng
2) cho đường tròn (o)đường kính AB.Kẻ tiếp tuyến tại B và đường tròn (o) trên tiếp tuyến lấy điểm P.Qua a kẻ đường thẳng song song OP cắt (o) tại Q.CMR: PQ là tiếp tuyến của đường tròn (o)
Cho (O) và dây cung AB. Trên tia AB lấy điểm C nằm ngoài đường tròn. Từ điểm chính giữa P của cung lớn AB kẻ đường kính PQ cắt dây AB tại D. Tia CP cắt đường tròn tại điểm thứ 2 là I. Các dây AB và QI cắt nhau tại K. Cho A, B, C là 3 điểm cố định. CMR: Khi O thay đổi nhưng vẫn đi qua A, B thì đường thẳng QI luôn đi qua 1 điểm cố định
Cho (o;r) đường kính AB ; H thuộc OA . Kẻ dây CD vuông góc với AB tại H . Vẽ đường tròn (O1) tại M , đường tròn (O2) đường kính BH . Nối AC cắt (O1) tại M , nối BC cắt (O2) tại N , đường thẳng MN cắt (o1) và (o2) tại E , F
a) CM : CMHN là hcn b) CE=CF=CH
c) CM : MN là tiếp tuyến chung 2 đường tròn (o1) , (o2)
Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB (A, B là các tiếp điểm). Kẻ đường kính AC, tiếp tuyến tại C của đường tròn cắt AB tại D. Gọi I là trung điểm của MO.
a) Chứng minh 4 điểm M, A, O, B cùng thuộc một đường tròn.
b) Chứng minh AB.AD = AC2 .
c) Tia AI cắt đường thẳng BC tại K. Chứng minh tứ giác MOCK là hình bình hành.
Cho đường tròn O và điểm A nằm ngoài đường tròn. Vẽ tiếp tuyến AB, AC. AO cắt BC tại M
a) c/m AO⊥BC
b) vẽ đường kính BE và AE cắt đường tròn tại F. Gọi G là trung điểm của EF, OG cắt BC tại H. c/m OM.OH= OH.OG
c/ C/m EH là tiếp tuyến của đường tròn tâm O
Cho đường tròn (O;R) đường kính AB. Điểm H thuộc đoạn OA. Kẻ dây CD vuông góc với AB tại H . Vẽ đường tròn (O1) đường kính AH và đường tròn (O2) đường kính HB. Nói CA cắt đường tròn (O1) tại M,nối BC cắt đường tròn (O2) tại N.Nối MN cắt đường tròn (O;R) tại E và F.
1. Chứng minh CMHN là HCN.
2. Cho AH=4cm,HB=9cm. Tinh MN.
3.C/m: MN là tiếp tuyến chung của 2 đường tròn (O1) va(O2) .
4.C/m: CE=CF=CH.
Cho hai đường tròn (O;4cm), (I;2cm) cắt nhau tại hai điểm phân biệt A, B sao cho OAI ≠ 90o. Tiếp tuyến của đường tròn (O) tại A cắt đường tròn (I) tại C khác A.Tiếp tuyến của đường tròn (I) tại A cắt đường tròn (O) tại D khác A. Gọi E là giao điểm của AB và CD. Gọi P, Q lần lượt là trung điểm của AD, CD. Chứng minh :
a) Hai tam giác APQ, ABC đồng dạng
b) ED = 4EC
giúp em bài này với ạ.