Ta có:
\(P\left(x\right)=x^2+2mx+m^2\)
\(\Leftrightarrow P\left(1\right)=1+2m+m^2\)
\(Q\left(x\right)=x^2+\left(2m+1\right)+m^2\)
\(\Leftrightarrow Q\left(-1\right)=1-\left(2m+1\right)+m^2=m^2-2m\)
Mà \(P\left(1\right)=Q\left(-1\right)\)
\(\Leftrightarrow1+2m+m^2=m^2-2m\)
\(\Leftrightarrow2m=-2m-1\)
\(\Leftrightarrow2m+2m=-1\)
\(\Leftrightarrow4m=-1\)
\(\Leftrightarrow m=\dfrac{-1}{4}\)
Vậy \(m=\dfrac{-1}{4}\)