Vì 1/x + 1/y + 1/z = 0 nên lần lượt nhân vs x; y; z ta có:
1 + x/y + x/z = 0 (1)
1 + y/z + y/x = 0 (2)
1 + z/x + z/y = 0 (3)
Từ (1); (2); (3) suy ra : x/y + y/z + z/x + x/z + y/x + z/y = - 3 (*)
Mặt khác : 1/x + 1/y + 1/z = 0 nên quy đồng lên ta có:
(xy + yz + zx)/xyz = 0 hay xy + yz + zx = 0
Hay : (1/x^2 + 1/y^2 + 1/z^2).(xy + yz + zx) = 0
khai triển ra :
yz/x^2 + zx/y^2 + xy/z^2 + x/y + y/z + z/x + x/z + y/x + z/y = 0
Vậy : yz/x^2 + zx/y^2 + xy/z^2 = - (x/y + y/z + z/x + x/z + y/x + z/y) = 3 (theo (*))