1. Cho nửa đường tròn tâm O đường kính AB. Vẽ các tiếp tuyến Ax, By ( Ax, By cùng thuộc nửa mặt phẳng chứa nửa đường tròn bờ AB). Gọi M là điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By tại C và D.
a) Chứng minh đường tròn đường kính CD tiếp xúc với AB.
b) Tìm vị trí của điểm M để hình thang ABDC có chu vi nhỏ nhất.
c) Kẻ MH⊥AB tại H. Chứng minh rằng BC đi qua trung điểm I của MH.
(Chỉ cần làm câu c thôi mấy câu để có số liệu thôi)
Cho nửa đường tròn(O;R), đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn, kẻ tiếp tuyến Bx với (O). M là điểm bất kì trên Bx(M khác B), AM cắt nửa đường tròn (O) tại N (N khác A). Kẻ OE vuông góc với AN tại E.
a) Chứng minh các điểm E, O, B, Mcùng thuộc đường tròn
b) Tiếp tuyến của nửa đường tròn (O) tại N cắt tia OE tại K và cắt MB tại D. Chứng minh KA là tiếp tuyến của nửa đường tròn (O).
c) Chứng minh KA.DB không đổi khi M di động trên tia Bx
d) Gọi H là giao điểm của AB và DK, kẻ OF vuông góc với AB(F thuộc DK). Chứng minh: BD/DF+DF/HF=1
cho nửa đg tròn (O;R) đường kính AB. Vẽ tiếp tuyến Ax (Ax và nửa đg tròn cùng thuộc nửa mặt phẳng bở AB ) , trên Ax lấy điểm P sao cho AP > R . Vẽ tiếp tuyến PE với nửa đg tròn (E là tiếp điểm ) đường thẳng PE giao AB tại F
a, CM : P,A,E,O cùng thc 1 đường tròn
b, CM: PO // BE
c, qua O kẻ đường thẳng vuôn góc OP cắt PE tại M : CM: EM.PF=PE.MF
Bài IV (3,5 điểm) Cho nửa đường tròn tâm O, bán kính R, đường kính AB. Điểm C thuộc đoạn AB (C khác B;A). Trên cùng nửa mặt phẳng bờ AB có chứa nửa (O;R). Vẽ nửa đường tròn tâm I, đường kính AC và nửa đường tròn tâm J, đường kính BC. Qua C kẻ đường thẳng vuông góc với AB cắt (O;R) tại D. DA cắt nửa đường tròn tâm I tại M, DB cắt nửa đường tròn tâm J tại N
1) Chứng minh rằng: Tứ giác MDNC là hình chữ nhật
2) Chứng minh rằng: Tứ giác AMNB nội tiếp.
3) Chứng minh rằng: OD vuông góc MN
4) Tìm vị trí của C trên AB để bán kính đường tròn ngoại tiếp tứ giác AMNB lớn nhất.
cho đường tròn tâm o có đường kính ab=2r. lấy điểm e nằm trên tiếp tuyến tại a của đường tròn . gọi m là giao điểm của eb với đường tròn:
a ) chứng minh AM là đường cao của tam giác EAB và 1/ EA bình + 1 / 4R bình =1/AM bình
b) qua b vẽ đường thẳng song song với eo và cắt đường tròn ở i chứng minh EI là tiếp tuyến
Trong mặt phẳng cho 18 điểm trong đó không có 3 điểm nào thẳng hàng. Chứng minh rằng: tồn tại có 3 điểm trong 5 điểm đã cho là 3 đỉnh của 1 tam giá có 1 góc: ≤ 10o
Trong mặt phẳng cho 18 điểm trong đó không có 3 điểm nào thẳng hàng. Chứng minh rằng: tồn tại có 3 điểm trong 18 điểm đã cho là 3 đỉnh của 1 tam giác có 1 góc: ≤ 10o
Cho nửa đường tròn tâm (O) đường kính AB . Vẽ hai tiếp tuyến Ax , By với nửa đường tròn . M là 1 điểm bất kì trên nửa đường tròn . Qua M vẽ đường tiếp tuyến với cắt đường tròn cắt Ax , By thứ tự tại D,C Chứng minh : a) 4 điểm A,D,M,O cũng thuộc 1 đường tròn b) Đường tròn đường kính CD nhận AB là tiếp tuyến
Cho đường tròn (O) đường kính AB, M là điểm tùy ý thuộc (O) (M không trùng A và B). Trên tia MB lấy điểm N sao cho MA = MN. Vẽ hình vuông AMNP, tia MP cắt (O) tại C. a) Chứng minh C là tâm đường tròn ngoại tiếp tam giác ANB