a)Do \(0^o< \alpha< 90^o\) nên \(0< sin\alpha< 1;0< cos\alpha< 1\).
Giả sử: \(tan\alpha< sin\alpha\Leftrightarrow\dfrac{sin\alpha}{cos\alpha}< sin\alpha\)
\(\Leftrightarrow sin\alpha< sin\alpha cos\alpha\)
\(\Leftrightarrow sin\alpha\left(1-cos\alpha\right)< 0\)
\(\Leftrightarrow1-cos\alpha< 0\)
\(\Leftrightarrow cos\alpha>1\) (vô lý).
b) \(sin\alpha+cos\alpha=sin\alpha+sin\left(\dfrac{\pi}{2}-\alpha\right)\)
\(=2.sin\dfrac{\pi}{4}cos\left(\dfrac{\pi}{4}-\alpha\right)=\sqrt{2}cos\left(\dfrac{\pi}{4}-\alpha\right)\)
\(=\sqrt{2}sin\left(\dfrac{\pi}{4}+\alpha\right)=\sqrt{2}sin\left(45^o+\alpha\right)\).
Do \(0^o< \alpha< 90^o\) nên \(45^o< \alpha+45^o< 135^o\).
Vì vậy \(\dfrac{\sqrt{2}}{2}< sin\left(\alpha+45^o\right)< 1\).
Từ đó suy ra \(\sqrt{2}.sin\left(45^o+\alpha\right)>\sqrt{2}.\dfrac{\sqrt{2}}{2}=1\) (Đpcm).