Cho \(x,y,z>0\)chứng minh Cauchy-Schwarz
\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)
1/ Thực hiệm phép tính:
a) \(\left(\dfrac{x-4}{2x-4}+\dfrac{2}{x^2-2x}\right)\div\dfrac{x-2}{x+1}\)
b) \(\dfrac{2x+3}{x^2-2x+1}\div\dfrac{6x+9}{x^2-1}+\dfrac{2}{x^2-1}\)
2/ Cho a, b, c thỏa mãn \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\). Tính giá trị của biểu thức \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)
Cho A = \(\dfrac{x-2}{2+\sqrt{x}}\) và B = \(\dfrac{4\left(2x-1\right)}{2x+1}\) với \(x>0\), x # \(\dfrac{1}{2}\), x # \(\dfrac{1}{4}\)
Chứng minh \(\dfrac{A}{B}=\dfrac{x-2}{4\sqrt{x}}\)
Tìm tập nghiệm của bất phương trình
a) \(\dfrac{x-2}{x+1}\ge\dfrac{x+1}{x-2}\)
b) \(\dfrac{\left(x-1\right)\left(2x-5\right)\left(x+1\right)}{x+4}< 0\)
Cho x,y,z >0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\). Tìm GTLN của biểu thức \(P=\dfrac{1}{\sqrt{5x^2+2xy+2y^2}}+\dfrac{1}{\sqrt{5y^2+2yz+2z^2}}+\dfrac{1}{\sqrt{5z^2+2xz+2x^2}}\)
Cho x>0, y>0, z>0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). CM: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)
Cho x, y, z > 0 thoả mãn x+y+z=2. Tìm GTNN của các biểu thức:
a) \(A=\sqrt{x^2+\dfrac{1}{x^2}}+\sqrt{y^2+\dfrac{1}{y^2}}+\sqrt{z^2+\dfrac{1}{z^2}}\)
b) \(B=\sqrt{x^2+\dfrac{1}{y^2}+\dfrac{1}{z^2}}+\sqrt{y^2+\dfrac{1}{z^2}+\dfrac{1}{x^2}}+\sqrt{z^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}}\)
c) \(C=\sqrt{2x^2+\dfrac{3}{y^2}+\dfrac{4}{z}}+\sqrt{2y^2+\dfrac{3}{z^2}+\dfrac{4}{x^2}}+\sqrt{2z^2+\dfrac{3}{x^2}+\dfrac{4}{y^2}}\)
giải hệ phương trình bằng pp sd bđt:
\(\left\{{}\begin{matrix}x+y^2+z^3=14\\\left(\dfrac{1}{2x}+\dfrac{1}{3y}+\dfrac{1}{6z}\right)\left(\dfrac{x}{2}+\dfrac{y}{3}+\dfrac{z}{6}\right)=1\end{matrix}\right.\)
bài 1:tìm min A=\(\dfrac{5x^2-12x+8}{\left(x-1\right)^2}\)
bài 2: chứng minh với mọi n\(\in\)N* và n\(\ge\)3:
\(\dfrac{1}{9}+\dfrac{1}{25}+...+\dfrac{1}{\left(2n+1\right)^2}< \dfrac{1}{4}\)
bài 3: tìm min, max của A=2x+3y biết \(2x^2+3y^2\le5\)
bài 4: tìm min của B=\(\sqrt{x-1}+\sqrt{5-x}\)
và A=\(\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\)