Đặt \(AB=a;AC=b\)
Xét \(\Delta ABC\) vuông tại A ta có :
Áp dụng hệ thức lượng trong \(\Delta\) vuông ta được :
\(\Leftrightarrow AH.BC=a.b\)
\(\Leftrightarrow ab=25.12=300\left(1\right)\)
Mặt khác:
Xét \(\Delta ABC\) vuông tại A, theo định lý Pytago ta được:
\(\Leftrightarrow a^2+b^2=BC^2\)
\(\Leftrightarrow a^2+b^2=625\)
\(\Leftrightarrow\left(a+b\right)^2-2ab=625\)
Thay \(\text{ab=}300\) vào ta được :
\(\Leftrightarrow\left(a+b\right)^2-600=625\)
\(\Leftrightarrow\left(a+b\right)^2=1225\)
\(\Rightarrow a+b=35\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\) Giải phương trình ta được: \(\left\{{}\begin{matrix}a=15\\b=20\end{matrix}\right.\)
\(\Rightarrow AB=15;AC=20\)
Xét \(\Delta AHC\) vuông tại H, theo định lý Pytago ta được:
\(HC=\sqrt{AC^2-AH^2}=16\)
Ta có: \(AB.AC=AH.BC=12.25=300\left(1\right)\)
Lại có: \(AB^2+AC^2=BC^2=625\)
\(\Rightarrow\left(AB+AC\right)^2=AB^2+AC^2+2AB.AC=625+600=1225\)
\(\Rightarrow AB+AC=35\left(2\right)\)
Từ (1) và (2) \(\Rightarrow AB,AC\) là nghiệm của pt \(x^2-35x+300=0\)
\(\Rightarrow\left(x-20\right)\left(x-15\right)=0\) mà \(AB< AC\Rightarrow\left\{{}\begin{matrix}AB=15\\AC=20\end{matrix}\right.\)
Ta có: \(AC^2=CH.CB\Rightarrow CH=\dfrac{AC^2}{CB}=\dfrac{20^2}{25}=16\)
\(\Rightarrow D\)
Áp dụng hệ thức lượng trong tam giác vuông ABC :
\(AH^2=BH\cdot HC\)
\(\Leftrightarrow AH^2=\left(BC-HC\right)\cdot HC\)
\(\Leftrightarrow12^2=\left(25-HC\right)\cdot HC\)
\(\Leftrightarrow HC^2-25HC+144=0\)
\(\Leftrightarrow\left[{}\begin{matrix}HC=16\left(N\right)\\HC=9\left(L\right)\end{matrix}\right.\)