2n2−n+2=2n2+n−2n−1+3=n(2n+1)−(2n+1)+32n2−n+2=2n2+n−2n−1+3=n(2n+1)−(2n+1)+3
⇒n(2n+1)⋮(2n+1)⇒n(2n+1)⋮(2n+1)
⇒2n+1⋮2n+1⇒2n+1⋮2n+1
⇒3⋮2n+1⇒3⋮2n+1
⇒2n+1∈Ư(3)={1;−1;3;−3}⇒2n+1∈Ư(3)={1;−1;3;−3}
Xét: 2n+1=1⇒n=02n+1=1⇒n=0
Xét: 2n+1=−1⇒n=−12n+1=−1⇒n=−1
Xét: 2n+1=3⇒n=12n+1=3⇒n=1
Xét: 2n+1=−3⇒n=−22n+1=−3⇒n=−2
Vậy: n∈{−2;−1;0;1}
Ta có:
\(2n^2-n+2=2n^2+n-2n+2=n\left(2n+1\right)-2n+2\)
Để đa thức trên chia hết cho \(2n+1\Leftrightarrow2n+2⋮2n+1\)
\(\Rightarrow2n+1+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\Rightarrow1\in U\left(1\right)=\left\{1;-1\right\}\)
Với \(2n+1=1\Leftrightarrow n=0\)
Với \(2n+1=-1\Leftrightarrow n=-1\)
Vậy,...