CM CĐTS:
1)(\(\dfrac{\sqrt{14}-\sqrt{7}}{2\sqrt{2}-2}+\dfrac{\sqrt{15}-\sqrt{5}}{2\sqrt{3}-2}\)):\(\dfrac{1}{\sqrt{7}-\sqrt{5}}=1\)
<=>[\(\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{2\left(\sqrt{3}-1\right)}\)]:\(\dfrac{1}{\sqrt{7}-\sqrt{5}}=1\)
<=>\(\left(\dfrac{\sqrt{7}}{2}+\dfrac{\sqrt{5}}{2}\right).\left(\sqrt{7}-\sqrt{5}\right)=1\)
<=>\(\dfrac{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{2}=1\)
<=>\(7-5=2\)
<=>2=2(luôn đúng)
2)\(\dfrac{4}{3+\sqrt{5}}+\dfrac{8}{\sqrt{5}-1}-\sqrt{\left(2-\sqrt{5}\right)^2}=7\)
<=>\(\dfrac{8}{6+2\sqrt{5}}+\dfrac{8}{\sqrt{5}-1}+\left(2-\sqrt{5}\right)=7\)
<=>\(\dfrac{8}{\left(\sqrt{5}+1\right)^2}+\dfrac{8}{\left(\sqrt{5}-1\right)}+2-\sqrt{5}=7\)
<=>\(\dfrac{8\left(\sqrt{5}-1\right)+8\left(\sqrt{5}+1\right)^2}{\left(\sqrt{5}+1\right)^2\left(\sqrt{5}-1\right)}+2-\sqrt{5}=7\)
<=>\(\dfrac{40+24\sqrt{5}}{4\left(\sqrt{5}+1\right)}+2-\sqrt{5}=7\)
<=>\(\dfrac{4\left(10+6\sqrt{5}\right)}{4\left(\sqrt{5}+1\right)}-\sqrt{5}=5\)
<=>\(\dfrac{10+6\sqrt{5}}{\sqrt{5}+1}-\sqrt{5}=5\)
<=>\(\dfrac{10+6\sqrt{5}-5-\sqrt{5}}{\sqrt{5}+1}=5\)
<=>\(\dfrac{5+5\sqrt{5}}{\sqrt{5}+1}=5\)
<=>\(5=5\)(đúng)
l
1)
<=> A=\(\sqrt{3+2\sqrt{3}+1}-\sqrt{4+2.2.\sqrt{3}+3}\)
<=>\(A=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
<=>\(A=\left|\sqrt{3}+1\right|-\left|2+\sqrt{3}\right|\)
<=>\(A=\sqrt{3}+1-2-\sqrt{3}\)
<=>\(A=-1\)
B=\(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
<=>\(B=\sqrt{3+2.\sqrt{3}.\sqrt{2}+2}-\sqrt{3-2.\sqrt{3}.\sqrt{2}+2}\)
<=>\(B=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
<=>\(B=\sqrt{3}+\sqrt{2}-\left(\sqrt{3}-\sqrt{2}\right)\)
<=>\(B=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\)
<=>\(B=2\sqrt{2}\)
C=\(\sqrt{x+2-2\sqrt{x+1}}+\sqrt{x+2+2\sqrt{x+1}}\)
ĐK: \(x+1\ge0\Leftrightarrow x\ge-1\)
\(\Leftrightarrow C=\sqrt{\left(x+1\right)-2\sqrt{x+1}+1}+\sqrt{\left(x+1\right)+2\sqrt{x+1}+1}\)\(\Leftrightarrow C=\sqrt{\left(\sqrt{x+1}-1\right)^2}+\sqrt{\left(\sqrt{x+1}+1\right)^2}\)
\(\Leftrightarrow C=\left|\sqrt{x+1}-1\right|+\left|\sqrt{x+1}+1\right|\)
TH1: \(-1\le x< 0\)
\(\Leftrightarrow C=-\sqrt{x+1}+1+\sqrt{x+1}+1\)
\(\Leftrightarrow C=2\)
TH2:\(x\ge0\)
\(\Leftrightarrow C=\sqrt{x+1}-1+\sqrt{x+1}+1\)
\(\Leftrightarrow C=2\sqrt{x+1}\)
Vậy khi \(-1\le x< 0\)thì\(\Leftrightarrow C=2\)
KHi \(x\ge0\)thì \(\Leftrightarrow C=2\sqrt{x+1}\)