\(\widehat{AEI}=\widehat{BEI}\) (chắn 2 cung bằng nhau AC và BC)
\(\Rightarrow\) theo định lý phân giác: \(\dfrac{EB}{AE}=\dfrac{IB}{IA}=\dfrac{\dfrac{R}{2}}{R+\dfrac{R}{2}}=\dfrac{1}{3}\)
Mặt khác 2 tam giác vuông AOH và AEB đồng dạng (chung góc A)
\(\Rightarrow\dfrac{OH}{OA}=\dfrac{EB}{AE}=\dfrac{1}{3}\)
Lại có \(OA=OD\Rightarrow OH=\dfrac{1}{3}OD\Rightarrow DH=\dfrac{2}{3}OD\)
O lại là trung điểm AB \(\Rightarrow H\) là trọng tâm ABD
\(\Rightarrow AH\) đi qua trung điểm BD hay K là trung điểm BD
Mà tam giác OBD vuông cân tại O \(\Rightarrow\) OK là trung tuyến đồng thời là đường cao
\(\Rightarrow OK\perp BD\)
Cho các số thực x,y,z thỏa mãn x,y,z \(\ge\) 1 và \(3\left(x+y+z\right)=x^2+y^2+z^2+2xy\)
Tìm Min: \(P=\dfrac{x^2}{\left(x+y\right)^2+x}+\dfrac{x}{z^2+x}\)