\(\dfrac{1}{2}l^2=2a^2\Rightarrow l=2a\)
\(2R=\sqrt{2}l\Rightarrow R=\dfrac{l}{\sqrt{2}}=a\sqrt{2}\)
\(h=\sqrt{l^2-R^2}=a\sqrt{2}\)
\(\Rightarrow V=\dfrac{1}{3}\pi R^2.h=\dfrac{2\sqrt{2}\pi a^3}{3}\)
\(\dfrac{1}{2}l^2=2a^2\Rightarrow l=2a\)
\(2R=\sqrt{2}l\Rightarrow R=\dfrac{l}{\sqrt{2}}=a\sqrt{2}\)
\(h=\sqrt{l^2-R^2}=a\sqrt{2}\)
\(\Rightarrow V=\dfrac{1}{3}\pi R^2.h=\dfrac{2\sqrt{2}\pi a^3}{3}\)
Một hình nón tròn xoay có thiết diện qua trục là một tam giác vuông cân có cạnh bằng a.
a) Tính diện tích toàn phần và thể tích của hình nón đó ?
b) Một mặt phẳng đi qua đỉnh tạo với mặt phẳng đáy một góc \(60^0\). Tính diện tích thiết diện được tạo nên ?
Cắt hình nón đỉnh S bởi mặt phẳng đi qua trục ta được một tam giác vuông cân có cạnh huyền bằng \(a\sqrt{2}\)
a) Tính diện tích xung quanh, diện tích đáy và thể tích của khối nón tương ứng
b) Cho dây cung BC của đường tròn đáy hình nón sao cho mặt phẳng (SBC) tạo với mặt phẳng chứa đáy hình nón một góc \(60^0\). Tính diện tích tam giác SBC ?
Một hình nón tròn xoay có đỉnh là D, tâm của đường tròn đáy là O, đường sinh bằng l và có góc giữa đường sinh và mặt phẳng đáy bằng \(\alpha\)
a) Tính diện tích xung quanh của hình nón và thể tích khối nón được tạo nên ?
b) Gọi I là một điểm trên đường cao DO của hình nón sao cho \(\dfrac{DI}{DO}=k;\left(0< k< l\right)\). Tính diện tích thiết diện qua I và vuông góc với trực của hình nón ?
Cho hình nón tròn xoay có đường cao \(h=20cm\), bán kính đáy \(r=25cm\)
a) Tính diện tích xung quanh của hình nón đã cho
b) Tính thể tích của khối nón được tạo thành bởi hình nón đó
c) Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện là 12cm. Tính diện tích thiết diện đó ?
Một hình trụ có hai đáy là hai hình tròn \(\left(O;r\right)\) và \(\left(O';r\right)\); Khoảng cách giữa hai đáy là \(OO'=r\sqrt{3}\). Một hình nón có đỉnh là O' và có đáy là hình tròn \(\left(O;r\right)\)
a) Gọi \(S_1\) là diện tích xung quanh của hình trụ và \(S_2\) là diện tích xung quanh của hình nón, hãy tính tỉ số \(\dfrac{S_1}{S_2}\) ?
b) Mặt xung quanh của hình nón chia khối trụ thành hai phần, hãy tính tỉ số thể tích hai phần đó ?
Cắt một hình nón bằng một mặt phẳng qua trục của nó ta được thiết diện là một tam giác đều cạnh 2a. Tính diện tích xung quanh và thể tích xung quanh và thể tích của hình nón đó ?
Một hình trụ có các đáy là hai hình tròn tâm O và O' bán kính r và có đường cao \(h=r\sqrt{2}\). Gọi A là một điểm trên đường tròn tâm O và B là một điểm trên đường tròn tâm O' sao cho OA vuông góc với O'B
a) Chứng minh rằng các mặt bên của tứ diện OABO' là những tam giác vuông. Tính thể tích của tứ diện này ?
b) Gọi \(\left(\alpha\right)\) là mặt phẳng qua AB và song song với OO'. Tính khoảng cách giữa trục OO' và mặt phẳng \(\left(\alpha\right)\)
c) Chứng minh rằng \(\left(\alpha\right)\) tiếp xúc với mặt trục OO' có bán kính bằng \(\dfrac{r\sqrt{2}}{2}\) dọc theo một đường sinh
Một khối trụ có bán kính đáy bằng r và chiều cao bằng \(r\sqrt{3}\).
Gọi A và B là hai điểm trên hai đường tròn đáy sao cho góc được tạo thành giữa đường thẳng AB và trục của khối trụ bằng \(30^0\)
a) Tính diện tích của thiết diện qua AB và song song với trục của khối trụ
b) Tính góc giữa hai bán kính đáy qua A và B
c) Xác định và tính độ dài đoạn vuông góc chung của AB và trục của khối trụ
Một hình trụ có bán kính r và chiều cao \(h=r\sqrt{3}\)
a) Tính diện tích xung quanh và diện tích toàn phần của hình trụ
b) Tính thể tích khối trụ tạo nên bởi hình trụ đã cho
c) Cho hai điểm A và B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa đường thẳng AB và trục của hình trụ bằng \(30^0\). Tính khoảng cách giữa đường thẳng AB và trục của hình trụ ?