Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bài 9: Ôn tập chương Phép dời hình và phép đồng dạng trong mặt phẳng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lan

Câu 2 :Cho đường tròn ( C ) : ( x + 1 )2 + ( y – 2 )2 = 9 . Phép tịnh tiến theo vecto v = ( 1; -2 ) biến đường tròn ( C ) thành đường tròn C’ ( I’;R’)

Câu 3: Cho đường tròn ( C ): x2 + y2 – 2x – 8 = 0 . V(0;-2) ( C ) = ( C’ ) . Tính diện tích hình tròn ( C’)

Câu 4 : Trong mặt phẳng Oxy , cho tam giác ABC có A( 1;-2) , B(-1;6) , C( -6;2) . Phép vị tự tâm O tỉ số k=-1/2 biến tam giác ABC thành tam giác A’B’C’ . Tìm trọng tâm của tam giác ABC

Câu 5 : Trong mặt phẳng Oxy , cho hai đường thẳng d : x-3y+3=0 và d’: x-3y+6=0 . Tìm tọa độ vecto v có phương vuông góc với d để Tv(d) = d’

Câu 6 : cho đường thẳng d : 2x-3y+1=0 . Xét Q(0;90) (d) =d’ . Tìm vecto chỉ phương u của đường thẳng d’

Câu 7 : Cho phép vị tự tâm A tỉ số k=2 biến điểm M thành M’

Câu 8 : Trong mặt phẳng Oxy, cho A ( 1;5) , B(3;3) . Phép đồng dạng tỉ số k=1/2 biến A thành A’ biến điểm B thành B’ . Tính độ dài A’B’

Câu 9 :Cho đường tròn ( C ) : x2+(y-1)2=8 . Tìm Ảnh của ( C ) qua phép tâm quay tâm O góc -90 độ

Câu 10: Cho đường thẳng denta : x-2y+3=0 và vecto u =(2;-1) .Tu(denta)=(denta’)

Nguyễn Lê Phước Thịnh
16 tháng 9 2022 lúc 7:26

Câu 2: 

\(\left(x+1\right)^2+\left(y-2\right)^2=9\)

=>R=3 và I(-1;2)

Tọa độ I' là:

x=-1+1=0 và y=2-2=0

=>Phương trình (C') là: x^2+y^2=9

Câu 3: 

\(V_{\left(O;-2\right)}\left(C\right)=\left(C'\right)\)

\(x^2+y^2-2x-8=0\)

=>x^2-2x+1+y^2=9

=>(x-1)^2+y^2=9

=>R=3 và I(1;0)

Tọa độ I' là:

\(\left\{{}\begin{matrix}x=1\cdot\left(-2\right)=-2\\y=0\cdot\left(-2\right)=0\end{matrix}\right.\)

Độ dài R' là:

\(R=3\cdot\left|-2\right|=6\)

Tọa độ (C') là:

\(\left(x+2\right)^2+y^2=36\)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Nguyễn Thu Phương
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Ngô Chí Thành
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết