Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Đức Mạnh

Câu 1: Tìm số tụ nhiên n để \(2n^2-n+2⋮2n+1\)

Câu 2: Cho đa thức f(x) thỏa mãn điều kiện:

(x-2013) . f(x) = (x-2014) . f(x-2012)

Chứng minh rằng f(x) có ít nhất 2 nghiệm.

Câu 3: Tìm 2 số tự nhiên x, y sao cho: \(5^x+1=2^y\)

Hoang Hung Quan
3 tháng 4 2017 lúc 18:02

Câu 1:

Ta có:

\(\left(2n^2-n+2\right)\div\left(2n+1\right)=n-1+\dfrac{3}{2n+1}\)

Để \(\left(2n^2-n+2\right)⋮\left(2n+1\right)\)

Thì \(3⋮2n+1\) Hay \(2n+1\inƯ\left(3\right)\)

\(Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vậy \(n=\left\{-2;-1;0;1\right\}\)

Câu 2:

Thay \(x=2013\) vào đẳng thức ta có:

\(\left(2013-2013\right).f\left(2013\right)=\left(2013-2014\right).f\left(2013-2012\right)\)

\(\Rightarrow f\left(1\right)=0\)

\(\Rightarrow x=1\) là một nghiệm của đa thức \(f\left(x\right)\)

Thay \(x=2014\) vào đẳng thức ta có:

\(\left(2014-2013\right).f\left(2014\right)=\left(2014-2014\right).f\left(2014-2012\right)\)

\(\Rightarrow f\left(2014\right)=0\)

\(\Rightarrow x=2014\) là một nghiệm của đa thức \(f\left(x\right)\)

Vậy đa thức \(f\left(x\right)\) có ít nhất 2 nghiệm \(x=1;x=2014\)

Câu 3:

Ta có:

\(5\equiv1\) (\(mod\) \(4\)) \(\Rightarrow5^x\equiv1\) (\(mod\) \(4\))

\(\Rightarrow5^x+1\equiv2\) (\(mod\) \(4\)) \(\Rightarrow y=1\)

Thay vào đẳng thức trên ta có:

\(5^x+1=2\Rightarrow5^x=1\Rightarrow x=0\)

Vậy \(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)


Các câu hỏi tương tự
Băng Di
Xem chi tiết
Something Just Like This
Xem chi tiết
Nguyen Ngoc Lien
Xem chi tiết
Nguyễn Phương Anh
Xem chi tiết
Tây Qua Jun
Xem chi tiết
Quân Nguyễn
Xem chi tiết
Quân Nguyễn
Xem chi tiết
Trn Quỳnh Như
Xem chi tiết
Nguyễn An
Xem chi tiết