Chương 2: HÀM SỐ BẬC NHẤT VÀ BẬC HAI

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Mai Trần

Câu 1: Tìm GTNN của hàm số y = \(\sqrt[3]{x^4+16x^2+64}-3\sqrt[3]{x^2+8}+1\)

Câu 2: Hàm số y = \(-x^2+2\left(m-1\right)x+3\) nghịch biến trên( \(\left(2;+\infty\right)\)

Câu 3: Gọi M và là GTLN và nhỏ nhất của hàm số y = \(x^2-4x\) trên đoạn [0;4]. Giá trị của M + m là bao nhiêu?

Câu 4: Tìm tất cả cái giá trị của tham số m để hàm số y = \(-x^2+2\left|m-1\right|x-3\) nghịch biến trên \(\left(2;+\infty\right)\)

Câu 5: Tìm tất cả các gí trị của tham số a để GTNN của hàm số y = f(x) =\(4x^2-4ax+\left(a^2-3x+2\right)\)trên đoạn [0;2] là bằng 3?

Nguyễn Việt Lâm
24 tháng 10 2019 lúc 17:31

\(y=\sqrt[3]{\left(x^2+8\right)^2}-3\sqrt[3]{x^2+8}+1\)

Đặt \(\sqrt[3]{x^2+8}=t\Rightarrow t\ge2\)

Xét hàm \(f\left(t\right)=t^2-3t+1\) trên \([2;+\infty)\)

\(a=1>0;\) \(-\frac{b}{2a}=\frac{3}{2}< 2\Rightarrow f\left(t\right)\) đồng biến trên \([2;+\infty)\)

\(\Rightarrow f\left(t\right)_{min}=f\left(2\right)=-1\)

2/ \(a=-1< 0\) ; \(-\frac{b}{2a}=m-1\Rightarrow\) hàm số nghịch biến trên \(\left(m-1;+\infty\right)\)

Để hàm số nghịch biến trên \(\left(2;+\infty\right)\Leftrightarrow m-1\le2\Rightarrow m\le3\)

3/ \(-\frac{b}{2a}=2\in\left[0;4\right]\)

\(f\left(0\right)=0\) ; \(f\left(2\right)=-4\) ; \(f\left(4\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}m=-4\\M=0\end{matrix}\right.\)

4/ \(a=-1< 0\) ; \(-\frac{b}{2a}=\left|m-1\right|\) \(\Rightarrow\) hàm số nghịch biến trên \(\left(\left|m-1\right|;+\infty\right)\)

Đề hàm số nghịch biến trên \(\left(2;+\infty\right)\Leftrightarrow\left|m-1\right|\le2\)

\(\Leftrightarrow-2\le m-1\le2\Rightarrow-1\le m\le3\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Min Suga
Xem chi tiết
Nguyễn Ngọc
Xem chi tiết
Nguyễn Quốc Huy
Xem chi tiết
Quỳnh Như Trần Thị
Xem chi tiết
Rimuru Tempest
Xem chi tiết
Quỳnh Như Trần Thị
Xem chi tiết
Kim So Hyun
Xem chi tiết
Scarlett
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết