a) x3-3x2+3x-1=0
⇔ ( x - 1 )\(^3\) = 0
⇔ x - 1 = 0
⇔ x = 1
b) 4x3-36x=0
⇔ 4x ( x\(^2\) - 9 ) = 0
⇔ 4x ( x - 3 ) ( x + 3 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
c) x6-1=0
⇔ x\(^6\) = 1
⇔ x = \(\pm\)1
d) x3-6x2+12x-8 = 0
⇔ ( x - 2 )\(^3\) = 0
⇔ x - 2 = 0
⇔ x = 2
C= (x2-10x+25)-4y2
= ( x - 5 )\(^2\) - 4y\(^2\) = ( x - 5 - 4y ) ( x - 5 + 4y )
E= x2-6xy+9y2 = ( x - 3y )\(^2\)
F=x3+6x2y+12xy2+8y3 = ( x + 2 )\(^3\)
G= x3-64 = ( x - 4 ) ( x\(^2\) + 4x +16 )
H= 125x3+y6 = ( 5x )\(^3\) + ( y\(^2\) )\(^3\) = ( 5x + y\(^2\) ) ( 25x\(^2\) - 5xy\(^2\) + y\(^4\) )