Ôn tập cuối năm môn Đại số 11

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn thị Phụng

Câu 1 :

a) Cho hàm số y = f (x) = \(\frac{mx^2}{3}-\frac{mx^2}{2}+\left(3-m\right)x-2\) . Xác định m để f ' ( x) > 0 , \(\forall\) x \(\in\) R

b) Cho hàm số y = x3 - 5x2 + 2 có đồ thị (C) . Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến vuông góc với đường thẳng (d) : x + 8y - 2019 = 0

Câu 2 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , SA vuông góc với mặt phẳng (ABCD) và SA = 2a

a. Chứng minh BD \(\perp\) (SAC)

b. Tính góc giữa SB và (SAD)

c. Tính cô sin của góc tạo bởi hai mặt phẳng (SAC) và (SCD)

HELP ME !!!!!!!!!!

Nguyễn Việt Lâm
4 tháng 6 2020 lúc 18:05

Câu 1:

a/ \(f'\left(x\right)=mx^2-mx+3-m\)

Để \(f'\left(x\right)>0;\forall x\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=m^2-4m\left(3-m\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\5m^2-12m< 0\end{matrix}\right.\) \(\Rightarrow0< m< \frac{12}{5}\)

b/ \(f'\left(x\right)=3x^2-10x\)

Tiếp tuyến vuông góc với \(x+8y-2019=0\Leftrightarrow y=-\frac{1}{8}x+\frac{2019}{8}\) nên có hệ số góc \(k=8\)

\(\Rightarrow3x^2-10x=8\Leftrightarrow3x^2-10x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-14\\x=-\frac{2}{3}\Rightarrow y=-\frac{14}{27}\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=8\left(x-4\right)-14\\y=8\left(x+\frac{2}{3}\right)-\frac{14}{27}\end{matrix}\right.\) banjt ự rút gọn

Nguyễn Việt Lâm
4 tháng 6 2020 lúc 18:20

Câu 2:

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\\BD\perp AC\left(\text{hai}-đường-chéo-hv\right)\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\)

b/\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AB\\AB\perp AD\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\)

\(\Rightarrow\) SA là hình chiếu vuông góc của SB lên (SAD)

\(\Rightarrow\widehat{BSA}\) là góc giữa SB và (SAD)

\(tan\widehat{BSA}=\frac{AB}{SA}=\frac{1}{2}\Rightarrow\widehat{BSA}\approx26^033'\)

c/ Gọi O là tâm đáy, từ O kẻ \(OH\perp SC\Rightarrow SC\perp\left(BDH\right)\) hay \(SC\perp\left(DHO\right)\)

Mà SC là giao tuyến của (SAC) và (SCD)

\(\Rightarrow\widehat{DHO}\) là góc giữa (SAC) và (SCD)

\(AC=a\sqrt{2}\Rightarrow\)\(SC=\sqrt{SA^2+AC^2}=a\sqrt{6}\)

\(OH=OC.sin\widehat{SCA}=\frac{AC}{2}.\frac{SA}{SC}=\frac{a\sqrt{3}}{3}\)

\(OD=\frac{1}{2}BD=\frac{a\sqrt{2}}{2}\Rightarrow DH=\sqrt{OD^2+OH^2}=\frac{a\sqrt{30}}{3}\)

\(\Rightarrow cos\widehat{DHO}=\frac{OH}{DH}=\frac{\sqrt{10}}{5}\)


Các câu hỏi tương tự
hnt Yuri
Xem chi tiết
Chí Nguyễn
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Nguyễn thị Phụng
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn thị Phụng
Xem chi tiết
Nguyễn Mai
Xem chi tiết
Nguyễn thị Phụng
Xem chi tiết