Bài 4: Cấp số nhân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cấp số nhân \(\left(u_n\right)\) có 

               \(\left\{{}\begin{matrix}u_1+u_5=51\\u_2+u_6=102\end{matrix}\right.\)

a) Tìm số hạng đầu và công bội của cấp số nhân ?

b) Hỏi tổng của bao nhiêu số hạng đầu tiên sẽ bằng 3069 ?

c) Số 12 288 là số hạng thứ mấy  ?

Bùi Thị Vân
25 tháng 5 2017 lúc 10:05

a)
Gọi q là công bội của \(\left(u_n\right)\). Ta có:
\(\left\{{}\begin{matrix}u_1+u_1q^4=51\\u_1q+u_1q^5=102\end{matrix}\right.\)\(\Rightarrow\dfrac{u_1+u_1q^4}{u_1q_1+u_1q^5}=\dfrac{51}{102}\)\(\Leftrightarrow\dfrac{1+q^4}{q+q^5}=\dfrac{1}{2}\)\(\Leftrightarrow\dfrac{1+q^4}{q\left(1+q^4\right)}=\dfrac{1}{2}\)\(\Leftrightarrow\dfrac{1}{q}=\dfrac{1}{2}\)\(\Leftrightarrow q=2\).
Suy ra: \(u_1+2^4u_1=51\)\(\Leftrightarrow17u_1=51\)\(\Leftrightarrow u_1=3\).
b) \(S_n=\dfrac{u_1\left(1-q^n\right)}{1-q}=\)\(\dfrac{3\left(1-2^n\right)}{1-2}=3\left(2^n-1\right)=3069\)
\(\Leftrightarrow2^n-1=1023\)\(\Leftrightarrow2^n=1024=2^{10}\)\(\Leftrightarrow n=10\).
Vậy tổng của 10 số hạng đầu tiên bằng 10.
c)
\(u_1.q^{n-1}=3.2^{n-1}=12288\)\(\Leftrightarrow2^{n-1}=4096=2^{12}\)\(\Leftrightarrow n-1=12\)\(\Leftrightarrow n=13\).
Vậy số hạng thứ 13 bằng 12 288.


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
ánh tuyết nguyễn
Xem chi tiết
♥ Aoko ♥
Xem chi tiết
Nguyễn thị Phụng
Xem chi tiết
hằng hồ thị hằng
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
ánh tuyết nguyễn
Xem chi tiết
Đặng Hồ Uyên Thục
Xem chi tiết