Bài 16: Cho tam giác ABC cân tại A (
). Kẻ BD vuông góc AC, CE vuông góc AB (D thuộc cạnh AC, E thuộc cạnh AB).
Chứng minh ∆ABD = ∆ACE.
b) Gọi I là giao điểm của BD và CE. Chứng minh AI là tia phân giác của góc BAC.
c) Chứng minh tam giác ADE cân.
Bài 7. (2.5 điểm) Cho tam giác ABC cân tại A, có I là trung điểm của cạnh BC. Vẽ ID vuông góc với AB tại D, vẽ IE vuông góc với AC tại E. a Chứng minh :ADBI= AECI b/ Chứng minh : AIDE là tam giác cân. c/ Chứng minh :AB+AC> 2 BI
Bài 16: Cho tam giác ABC cân tại A . Kẻ BD vuông góc AC, CE vuông góc AB (D thuộc cạnh AC, E thuộc cạnh AB).
Chứng minh tam giacs ABD = tam giacs ACE.
b) Gọi I là giao điểm của BD và CE. Chứng minh AI là tia phân giác của góc BAC.
c) Chứng minh tam giác ADE cân.
Cho tam giác ABC vuông tại A, có B=60° và AB = 5cm. Tia phân giác của góc B cắt AC tại D . Kẻ DE vuông góc với BC (EeBC) a. Chứng minh tam giác ABD= tam giác EBD b). Chứng minh tam giác ABE là tam giác đều c). Chứng minh tam giác AEC cân d). Chứng minh độ dài cạnh AC a. Chứng minh: ABD = EBD. b. Chứng minh: ABE là tam giác đều. c. Tính độ dài cạnh BC. d. Trên tia đối của tia AB lấy điiểm M sao cho AM = AB. Chứng minh : E,M,D thẳng hàng
Cho tam giác ABC cân tại A(góc A nhọn). Vẽ AH vuông góc với BC (H thuộc BC). a. Chứng minh tam giác AHB bằng tam giác AHC b. Đường thẳng qua H song song với AB cắt AC tại D. Gọi M là trung điểm của HC. Chứng minh tam giác DHC cân và DM song song với AH.
giúp em câu b
BÀI 11 Cho tam giác ABC cân tại A (A<90 độ) , vẽ BD vuông góc AC VÀ CE vuông góc AB . Gọi H là giao điểm cua r BD và CE .a)chứng minh tam giácABD= tam giác ACE . b) cho góc DBC= 25độ tính số đo góc BCE . c) chứng minh tam giác AED cân . d) chứng minh AH là đường trung trực của BC
:Cho tam giác ABC cân tại A, vẽ AH vuông góc BC tại H. biết AB = 10cm, BH = 6cm.
1. Tính AH.
2. Chứng minh Δ ABH = Δ ACH.
3.Trên cạnh BA lấy điểm D, CA lấy điểm E sao cho BD = CE. Chứng minh tam giác HDE cân.
4.Chứng minh DE // BC.
Cho tam giác ABC cân tại A, AM là đường trung tuyến
a, Chứng minh rằng AM vuông góc BC
b, Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh rằng tam giác BMD bằng tam giác CMA. Từ đó suy ra BD = AC
c, tính số đo các cạnh tam giác MBD biết AM = 4 cm, BC = 6 cm
d, Trên tia đối của tia CB lấy tia lấy điểm E sao cho CB = CE. Chứng minh rằng C là trọng tâm của tam giác ABE
BÀI 4 :Cho tam giác ABC cân tại A, vẽ AH vuông góc BC tại H. biết AB = 10cm, BH = 6cm.
1. Tính AH.
2. Chứng minh Δ ABH = Δ ACH.
3.Trên cạnh BA lấy điểm D, CA lấy điểm E sao cho BD = CE. Chứng minh tam giác HDE cân.
4.Chứng minh DE // BC.
MÌNH CẦN LỜI GIẢI CHỨ KHÔNG CẦN ĐÁP ÁN
Cho tam giác ABC cân tại A. Trên 2 cạnh AB và AC lần lượt lấy hai điểm M và N sao cho AM = AN. Kẻ AH vuông góc với BC, H ∈ BC
a. Chứng minh tam giác ABH = tam giác ACH
b. Chứng minh BN=CM
c. Nếu cho cạnh AH=8cm, AB= 10cm. Tính cạnh BC