`a/(x+1)+b/(x-2)=(a(x-2)+b(x+1))/((x+1)(x-2))`
`=(ax-2a+bx+b)/(x^2-x-2)`
`=((a+b)x+(-2a+b))/(x^2-x-2)`
``
Theo đề bài: `((a+b)x+(-2a+b))/(x^2-x-2)=(32x-19)/(x^2-x-2)`
Đồng nhất hệ số ta được: `{(a+b=32),(-2a+b=-19):}`
`<=>{(a+b=32),(2a-b=19):}`
`<=>{(3a=51),(a+b=32):}`
`<=>{(a=17),(17+b=32):}`
`<=>{(a=17),(b=15):}`