Cho phương trình \(x^2-x+m=0\). Tìm tất cả các giá trị của tham số m để phương trình có hai nghiệm phân biệt \(x_1,x_2\) sao cho \(x_1< x_2< 2\)Giúp mình bài này với ạ. MÌnh cảm ơn nhiều !
Giải các phương trình :
a) \(x^3+4x^2+x-6=0\)
b) \(x^3-2x^2-5x+6=0\)
c) \(2x^4+2\sqrt{2}x^3+\left(1-3\sqrt{2}\right)x^2-3x-4=0\)
d) \(\left(2x^2+7x-8\right)\left(2x^2+7x-3\right)-6=0\)
x\(^2\)- mx- m - 1=0( m là tham số). Tìm các giá trị của m để phương trình có 2 nghiệm phân biệt x\(_1\),x\(_2\)để S=\(\frac{m^2+2m}{x_1^{ }^2+x_2^{ }^2+2}\) đạt giá trị nhỏ nhất
Giúp mình với ạ!! Cảm ơn các bạn nhiều!!
Giải pt và hệ pt:
a)\(\sqrt{5x+1}-\sqrt{4-x}+2x^2-5x+6=0\)
b)\(\left\{{}\begin{matrix}\sqrt{2x+1}+\sqrt{2y+1}=\frac{\left(x-y\right)^2}{2}\\\left(x+y\right)\left(x+2y\right)+3x+2y=4\end{matrix}\right.\)
giải phương trình : \(x^3-3x^2+2\sqrt{2}x+2-2\sqrt{2}=0\)
Gải phương trình :
\(x^2-3x+3-\sqrt{x-2}-\sqrt{7-x}=0\)
Bài 1 : Giải các phương trình sau:
a)\(2x+1+4\sqrt{x+1}=2\sqrt{1-2x}\)
b)\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
c)\(3x+2\left(\sqrt{x-4}+6\right)=12\sqrt{x}\)
d)\(\sqrt{x-2}+\sqrt{7-x}=x^2+7x+27\)
e)\(\left(\sqrt{2-x}+1\right)\left(\sqrt{x+3}-\sqrt{x-1}\right)=4\)
Bài 2:Cho a;b;c>0 thỏa mãn a+b+c=1
Chứng minh \(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le21\)
Bài 3:Tìm các cặp số nguyên (x;y) thỏa mãn \(x^2+2y^2+2xy-5x-5y=-6\)
để (x+y) nguyên
Bài 4:Cho x,y,z là các số thực thỏa mãn điều kiện:\(x+y+z+xy+yz+zx=6\)
Chứng minh rằng \(x^2+y^2+z^2\ge3\)
Bài 5: Với ba số thực a;b;c thỏa mãn điều kiện a(a-b+c)<0,chứng minh phương trình \(ax^2+bx+c=0\)(ẩn x) luôn có hai nghiệm phân biệt
Câu 2:Cho biểu thức P=\(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x-1}}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)(với x >0,x khác 1)
a)Rút gọn biểu thức P
b)Tính giá trị của biểu thức P khi 2\(\sqrt{x+1=5}\)
c)Tìm các giá trị của x để P >\(\dfrac{1}{2}\)
Giải các phương trình:
a) \(5x^2-3x+1=2x+11;\) b) \(\dfrac{x^2}{5}-\dfrac{2x}{3}=\dfrac{x+5}{6};\)
c) \(\dfrac{x}{x-2}=\dfrac{10-2x}{x^2-2x};\) d) \(\dfrac{x+0,5}{3x+1}=\dfrac{7x+2}{9x^2-1};\)
e) \(2\sqrt{3}x^2+x+1=\sqrt{3}\left(x+1\right);\) f) \(x^2+2\sqrt{2}x+4=3\left(x+\sqrt{2}\right).\)