C/Minh đẳng thức:
a) \(\left(\frac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}\right).\frac{\sqrt{a}+1}{\sqrt{a}}=\frac{2}{a-1}\) (với a>0, b>0, a≠b)
b)\(\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\) (với a>0, b>0,a≠b)
c) \(\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}=\frac{a+9}{a-9}\) (với a≥0, b≥0,a≠9)
Các bạn giúp mình mấy câu BĐT Cauchy này với
1. cho a,b,c>0 và a+b+c=6 CMR \(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\ge2\)
2.cho a,b,c>0 CMR \(\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ac}{\sqrt{b^2+3}}\le\frac{3}{2}\)
3. cho a,b,c >0 CMR \(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ac}{c+3a+2b}\le\frac{a+b+c}{6}\)
mấy câu này khá là khó, giúp mình với
Cho các số a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=7,a+b+c=23,\sqrt{abc}=3\)
Tính GTBT:
H=\(\frac{1}{\sqrt{ab}+\sqrt{c}-6}+\frac{1}{\sqrt{bc}+\sqrt{a}-6}+\frac{1}{\sqrt{ac}+\sqrt{b}-6}\)
a,b,c>0, biết a+b+c=3
CMR a)\(\frac{ab}{\sqrt{a^2+3b^2}}+\frac{bc}{\sqrt{b^2+3c^2}}+\frac{ac}{\sqrt{c^2+3a^2}}\)≤\(\frac{3}{2}\)
b)\(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\)≥\(\frac{3}{2}\)
1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\)
b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)
c) \(x,y,z>0.\) Min \(P=\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}+\sqrt{\frac{y^3}{y^3+\left(z+x\right)^3}}+\sqrt{\frac{z^3}{z^3+\left(x+y\right)^3}}\)
d) \(a,b,c>0;a^2+b^2+c^2+abc=4.Cmr:2a+b+c\le\frac{9}{2}\)
e) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). Cmr: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\ge\frac{3}{2}\)
f) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=4\end{matrix}\right.\) Cmr: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\)
g) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=2\end{matrix}\right.\) Max : \(Q=\frac{a+1}{a^2+2a+2}+\frac{b+1}{b^2+2b+2}+\frac{c+1}{c^2+2c+2}\)
1/ Tính:
a) \(\frac{\sqrt{6+\sqrt{11}}-\sqrt{7-\sqrt{33}}}{\sqrt{6}+\sqrt{2}}\)
b) \(\frac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\frac{2}{4+\sqrt{15}}-\frac{5\sqrt{5}+3\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
2/ Rút Gọn: với a ≥ 0, a ≠ 1
B=\(\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\left(\frac{1+\sqrt{a}}{a-1}\right)^2\)
3/ Cho biểu thức: A = \(\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{3-3\sqrt{x}}{x-5\sqrt{x}+6}\)
a) Tìm điều kiện xác định của A
b) Rút gọn A
c) Tìm x để A < -1
1. Rút gọn \(A=\frac{\sqrt{14+6\sqrt{5}}-\sqrt{14-6\sqrt{5}}}{\sqrt{\left(\sqrt{5}+1\right)\cdot\sqrt{6-2\sqrt{5}}}}\)
2.Tính a) \(B=\left(\sqrt[3]{2}+1\right)^3\cdot\left(\sqrt[3]{2}-1\right)^3\)
b)Tìm C=\(a^3b-ab^3\) với \(a=\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\); \(b=\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\)
3. Giải \(\left|x^2-x+1\right|-\left|x-2\right|=6\)
Câu 1: Xét biểu thức
\(A=\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}\)
a) Tìm điều kiện của a và b để A có nghĩa. Rút gọn A.
b) Cho giá trị của biểu thức A sau khi đã rút gọn bằng \(\frac{b+10}{b-10}\left(b\ne10\right)\). Chứng minh rằng \(\frac{a}{b}=\frac{9}{10}\)
Câu 2: Rút gọn
a) \(A=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(B=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
Câu 3: Giải phương trình và hệ phương trình sau
a) (x - 2)2 - (x + 3)2 = 2(x - 5)
b) \(\left\{{}\begin{matrix}\frac{x-y}{7}+\frac{2x+y}{17}=7\\\frac{4x+y}{5}+\frac{y-7}{19}=15\end{matrix}\right.\)
Câu 4: Cho nửa đường tròn (O) đường kính AB = 2R. Kẻ hai tiếp tuyến Ax và By của mỗi đường tròn (O) và tiếp tuyến thứ ba tiếp xúc với (O) tại điểm M và cắt Ax tại D, cắt By tại E.
a) CM: ΔDOE là tam giác vuông.
b) CM: AD.BE = R2.
c) Xác định vị trí của M trên nửa đường tròn (O) sao cho diện tích ΔDOE đạt giá trị nhỏ nhất.
Câu 5: Chứng minh rằng nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là các số chính phương thì: n là bội số của 24.
Câu 6: Chứng minh rằng với mọi số thực a, b, c ta có các bất đẳng thức:
a) a4 + b4 ≥ a3b + ab3.
b) a2 + b2 +c2 ≥ ab + bc + ca.
Help me!!!
Thanks trc
Cho hđt:
\(\sqrt{a\pm\sqrt{b}}=\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\pm\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\) (a,b>0 và \(a^2-b>0\))
Áp dụng kq để rút gọn:
\(a.\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
b. \(\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
c. \(\sqrt{\frac{2\sqrt{10}+\sqrt{30}-2\sqrt{2}-\sqrt{6}}{2\sqrt{10}-2\sqrt{2}}}:\frac{2}{\sqrt{3}-1}\)