a) \(B=\left(\frac{\sqrt{x}}{\sqrt{x}}\right):\left(\frac{x\sqrt{x}-1}{x-1}-\frac{x\left(\sqrt{x}+1\right)}{x-1}\right)\) (chỗ này em quy đồng lên luôn nha!)
\(=-1:\frac{\left(x+1\right)}{x-1}=-\frac{\left(x-1\right)}{x+1}=\frac{\left(1-x\right)}{x+1}\)(đến đây chắc có thêm cái đk x khác -1)
b) Thay x = 7 - 4\(\sqrt{3}\). Ta có:\(B=\frac{\sqrt{3}}{2}\)
c) Đặt \(\frac{1-x}{x+1}=k\in\mathbb{Z}\)
Suy ra \(1-x=kx+k\Leftrightarrow x\left(k+1\right)=1-k\Leftrightarrow x=\frac{1-k}{k+1}\)( k khác - 1)
Do x > 1/9 nên \(\frac{1-k}{1+k}>\frac{1}{9}\Leftrightarrow k< \frac{4}{5}\)
Mà k thuộc Z do đó k = 0=> x = 1.
Em ko chắc nha!
a)\(B=\left(\frac{x+\sqrt{x}}{\sqrt{x}}-\sqrt{x}\right):\left(\frac{x\sqrt{x}-1}{x-1}-\frac{x}{\sqrt{x}-1}\right)\)(ĐKXĐ:\(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\))
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}-\sqrt{x}\right):\left(\frac{x\sqrt{x}-1}{x-1}-\frac{x\left(\sqrt{x}+1\right)}{x-1}\right)\)
\(=\left(\sqrt{x}+1-\sqrt{x}\right):\left(\frac{x\sqrt{x}-1-x\sqrt{x}-x}{x-1}\right)\)
\(=1:\frac{-\left(1+x\right)}{x-1}\)
\(=\frac{x-1}{-\left(1+x\right)}=\frac{1-x}{x+1}\)
b)Khi \(x=7-4\sqrt{3}\) thì \(B=\frac{1-7+4\sqrt{3}}{7-4\sqrt{3}+1}=\frac{4\sqrt{3}-6}{8-4\sqrt{3}}=\frac{2\sqrt{3}\left(2-\sqrt{3}\right)}{4\left(2-\sqrt{3}\right)}=\frac{\sqrt{3}}{2}\)
c)\(B=\frac{1-x}{x+1}=\frac{2-\left(x+1\right)}{x+1}=\frac{2}{x+1}-1\)
Để B nguyên thì \(2⋮x+1\)
\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\)
Mà \(\left\{{}\begin{matrix}x>\frac{1}{9}\\x\ne1\end{matrix}\right.\)
Do đó: không có giá trị nào của x>1/9 để B nhận giá trị nguyên.
Akai HarumaBăng Băng 2k6Vũ Minh TuấntthNo choice teenFa Châu DePhạm Bảo Phương@Nk>↑@HISINOMA KINIMADO
a, ĐKXĐ: x lớn hơn 0; x ≠ 1
\(B=\left(\frac{x+\sqrt{x}}{\sqrt{x}}-\sqrt{x}\right):\left(\frac{x\sqrt{x}-1}{x-1}-\frac{x}{\sqrt{x}-1}\right)\)
\(B=\left(\frac{x+\sqrt{x}-x}{\sqrt{x}}\right):\left(\frac{x\sqrt{x}-1-x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(B=1:\left(-\frac{1+x}{x-1}\right)\)
\(B=\frac{\left(-1\right)\left(x-1\right)}{1+x}=\frac{1-x}{1+x}\)