Gọi d là ƯCLN của 3n+1 và 5n+4
=> 3n+1 chia hết cho d;5n+4 chia hết cho d
=> 15n+5 chia hết cho d;15n+12 chia hết cho d
=> (15n+12-15n+5) chia hết cho d
=> 7 chia hết cho d
=> d \(\in\) Ư(7) = {-1;1;7;-7}
Vậy ƯCLN của 3n+1 và 5n+4 là 7
ta thấy các cặp số nguyên tố cùng nhau chỉ có 2 số 2 và 3
nếu 3n+1 và 5n + 4 sẽ là 2 và 3 hoặc 3 và 2
mà 2 cặp số nguyên tố cùng nhau 2 và 3 có ƯCLN ( 2,3 ) = 1 =. ƯCLN ( 3n +1 ; 5n +4 ) là 1