Vì \(\frac{3n+2}{4n-5}\) là số tự nhiên => \(4.\frac{3n+2}{4n-5}\) => \(\frac{12n+8}{4n-5}\) là số tự nhiên :
Thực hiện phép chia :
=> \(\frac{12n+8}{4n-5}=3+\frac{23}{4n-5}\)
Để \(3+\frac{23}{4n-5}\) là số tự nhiên <=> \(\frac{23}{4n-5}\) là số tự nhiên
=> 4n - 5 \(\in\) Ư(23) = { -23;-1;1;23 }
Ta có : 4n - 5 = - 23 => 4n = - 18 => n = - 9/2 ( loại )
4n - 5 = - 1 <=> 4n = 4 => n = 1 (TM)
4n - 5 = 1 => 4n = 6 => n = 3/2 (loại)
4n - 5 = 23 => 4n = 28 => n = 7 (TM)
Vậy n = { 1; 7 }
Đặt A=(3n+2)/(4n-5)
Để A là số tự nhiên thi
3n+2 chia hết cho 4n-5
4(3n+2)chia hết cho 4n-5
12n+8 chia hết cho 4n-5
12n-15+8+15 chia hết cho
4n-5
23chia hết cho 4n-5
=>4n-5 thuộc Ư(23)
4n-5 thuộc {1;23;-1;-23}
4n thuộc{6;28;4;-18}
n thuộc{7;1}