a.
Ta có: \(405^n=......5\)
\(2^{405}=2^{404}\cdot2=\left(.......6\right)\cdot2=.......2\)
\(m^2\) là số chính phương nên có chữ số tận cùng khác 3. Vậy A có chữ số tận cùng khác 0 \(\Rightarrow A⋮10\)
b.
\(B=\frac{2n+9}{n+2}+\frac{5}{n+2}\frac{n+17}{ }-\frac{3n}{n+2}=\frac{2n+9+5n+17-3n}{n+2}=\frac{4n+26}{n+2}\)
\(B=\frac{4n+26}{n+2}=\frac{4\left(n+2\right)+18}{n+2}=4+\frac{18}{n+2}\)
Để B là số tự nhiên thì \(\frac{18}{n+2}\) là số tự nhiên
\(\Rightarrow18⋮\left(n+2\right)\Rightarrow n+2\inư\left(18\right)=\left\{1;2;3;6;9;18\right\}\)
+ \(n+2=1\Leftrightarrow n=-1\) ( loại )
+ \(n+2=2\Leftrightarrow n=0\)
+ \(n+2=3\Leftrightarrow n=1\)
+ \(n+2=6\Leftrightarrow n=4\)
+ \(n+2=9\Leftrightarrow n=7\)
+ \(n+2=18\Leftrightarrow n=16\)
Vậy \(n\in\left\{0;1;4;7;16\right\}\) thì \(B\in N\)
c.
Ta có \(55=5\cdot11\) mà \(\left(5;1\right)=1\)
Do đó \(C=\overline{x1995y}⋮55\)\(\Leftrightarrow\)\(\begin{cases}C⋮5\\C⋮11\end{cases}\) \(\frac{\left(1\right)}{\left(2\right)}\)
\(\left(1\right)\Rightarrow y=0\) hoặc \(y=5\)
+ \(y=0\div\left(2\right)\Rightarrow x+9+5-\left(1+9+0\right)⋮11\Rightarrow x=7\)
+ \(y=5\div\left(2\right)\Rightarrow x+9+5-\left(1+9+5\right)⋮11\Rightarrow x=1\)
c. Tìm các chữ số x, y sao cho: C = x1995y ( gạch đầu ) chia hết cho 55