\(VP=\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{n+a}{n\left(n+a\right)}-\dfrac{n}{n\left(n+a\right)}=\dfrac{a}{n\left(n+a\right)}=VT\)
Ta có :
\(\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{n+a}{n\left(n+a\right)}-\dfrac{n}{n\left(n+a\right)}=\dfrac{a}{n\left(n+a\right)}\)
Vậy \(\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{a}{n\left(n+a\right)}hay\dfrac{a}{n\left(n+a\right)}=\dfrac{1}{n}-\dfrac{1}{n+a}\)
\(CM:\dfrac{a}{n\left(n+a\right)}=\dfrac{1}{n}-\dfrac{1}{n+a}\)
\(\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{n+a}{n\left(n+a\right)}-\dfrac{n}{n\left(n+a\right)}\)
\(=\dfrac{n+a-n}{n\left(n+a\right)}=\dfrac{a}{n\left(n+a\right)}\)