Do a;b;c là 3 cạnh của 1 tam giác nên \(\left\{{}\begin{matrix}\left|a-b\right|< c\\a+b>c\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2< c^2\\\left(a+b\right)^2>c^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2-c^2< 0\\\left(a+b\right)^2-c^2>0\end{matrix}\right.\)
Ta có
\(\left(a^2+b^2-c^2\right)^2-4a^2b^2\)
\(=\left(a^2+b^2-2ab-c^2\right)\left(a^2+b^2+2ab-c^2\right)\)
\(=\left(\left(a-b\right)^2-c^2\right)\left(\left(a+b\right)^2-c^2\right)< 0\) (đpcm)